C++AVL树

目录

1.AVL树的概念

2.树节点的定义

3.树的插入

4.树的旋转

右单旋

左单旋

先右旋再左旋

先左旋再右旋

5.AVL树的性能


1.AVL树的概念

二叉搜索树虽可以缩短查找的效率,但 如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当
于在顺序表中搜索元素,效率低下 。因此,两位俄罗斯的数学家 G.M.Adelson-Velskii E.M.Landis 1962
发明了一种解决上述问题的方法: 当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之
差的绝对值不超过 1( 需要对树中的结点进行调整 ) ,即可降低树的高度,从而减少平均搜索长度。
一棵 AVL 树或者是空树,或者是具有以下性质的二叉搜索树:
它的左右子树都是 AVL
左右子树高度之差 ( 简称平衡因子 ) 的绝对值不超过 1(-1/0/1)

2.树节点的定义

template<class T>
struct AVLTreeNode
{
	AVLTreeNode(const T& data)
		: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
		, _data(data), _bf(0)
	{}
	AVLTreeNode<T>* _pLeft; // 该节点的左孩子
	AVLTreeNode<T>* _pRight; // 该节点的右孩子
	AVLTreeNode<T>* _pParent; // 该节点的双亲
	T _data;
	int _bf; // 该节点的平衡因子
};

3.树的插入

bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;

		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;

			}
			else
				return false;
		}

		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

		//控制平衡因子
		//1.更新平衡因子
		//2.出现异常平衡因子,那么需要旋转平衡处理
		while (parent)
		{
			if (cur == parent->_left)
			{
				parent->_bf--;
			}
			else
			{
				parent->_bf++;
			}

			if (parent->_bf == 0)
			{
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				//继续往上更新
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//旋转处理
				//右单旋
				if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (paretn->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}

				break;
			}
			else
			{
				//说明插入更新平衡因子之前,树中平衡因子就有问题
				assert(false);
			}

		}

		return true;
	}

4.树的旋转

右单旋

右单旋,说明数据在左边,左边高
旋转,按照字面意思,联想一下意味着60这个数据它肯定是要下来的,意味着subL要上去,因为都是parent的左子树所以数据都是比parent小,把它连接到parent的左边,而subL则升上去由于parent更大所以只能连接在subL的右边
void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
		subLR->_parent = parent;

		Node* parentParent = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}
			subL->_parent = parentParent;
		}
		subR->_bf = parent->_bf = 0;
	}

左单旋

和上面的原理就是一样的。

先把subRL连接到parent的右边,再把parent连接到sunR的左边

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right =  subLR
		if (subRL)
		{
			subLR->_parent = parent
		}

		Node* parentParent == parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;

		if (parent == nullptr)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
			{
				parent = parentParent->_left;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}
		subL->_bf = parent->_bf = 0;

	}

此时我们发现了了一个问题,如果是subRL有数据

按照上面的旋转方法,它变成下面这样,此时它依然不平衡,这样的情况该怎么办

先右旋再左旋

为了应对这样的情况我们可以先把subR来一个右单旋,再把parent来一个左单旋
先右单旋,变为下图 N代表空
再接着左单旋
void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
 
	int bf = subRL->_bf;
 
	RotateR(subR);
	RotateL(parent);
 
	if (bf == 1)
	{
		parent->_bf = -1;
		subR->_bf = 0;
		subRL->_bf = 0;
	}
	else if (bf == 0)
	{
		parent->_bf = 0;
		subR->_bf = 0;
		subRL->_bf = 0;
	}
	else if (bf == -1)
	{
		parent->_bf = 0;
		subR->_bf = 1;
		subRL->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

先左旋再右旋

和上面的原理是一样的

void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
 
	//旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节
	//点的平衡因子
	int bf = subLR->_bf;
 
	RotateL(subL);
	RotateR(parent);
 
	if (bf == 1)
	{
		parent->_bf = 0;
		subL->_bf = -1;
		subLR->_bf = 0;
	}
	else if (bf == 0)
	{
		parent->_bf = 0;
		subL->_bf = 0;
		subLR->_bf = 0;
	}
	else if (bf == -1)
	{
		parent->_bf = 1;
		subL->_bf = 0;
		subLR->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

5.AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 log N 。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。
 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值