目录
1.AVL树的概念
二叉搜索树虽可以缩短查找的效率,但
如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当
于在顺序表中搜索元素,效率低下
。因此,两位俄罗斯的数学家
G.M.Adelson-Velskii
和
E.M.Landis
在
1962
年
发明了一种解决上述问题的方法:
当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之
差的绝对值不超过
1(
需要对树中的结点进行调整
)
,即可降低树的高度,从而减少平均搜索长度。
一棵
AVL
树或者是空树,或者是具有以下性质的二叉搜索树:
它的左右子树都是
AVL
树
左右子树高度之差
(
简称平衡因子
)
的绝对值不超过
1(-1/0/1)
2.树节点的定义
template<class T>
struct AVLTreeNode
{
AVLTreeNode(const T& data)
: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
, _data(data), _bf(0)
{}
AVLTreeNode<T>* _pLeft; // 该节点的左孩子
AVLTreeNode<T>* _pRight; // 该节点的右孩子
AVLTreeNode<T>* _pParent; // 该节点的双亲
T _data;
int _bf; // 该节点的平衡因子
};
3.树的插入
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
return false;
}
cur = new Node(kv);
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
cur->_parent = parent;
}
else
{
parent->_left = cur;
cur->_parent = parent;
}
//控制平衡因子
//1.更新平衡因子
//2.出现异常平衡因子,那么需要旋转平衡处理
while (parent)
{
if (cur == parent->_left)
{
parent->_bf--;
}
else
{
parent->_bf++;
}
if (parent->_bf == 0)
{
break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
//继续往上更新
cur = parent;
parent = parent->_parent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
//旋转处理
//右单旋
if (parent->_bf == -2 && cur->_bf == -1)
{
RotateR(parent);
}
else if (paretn->_bf == 2 && cur->_bf == 1)
{
RotateL(parent);
}
break;
}
else
{
//说明插入更新平衡因子之前,树中平衡因子就有问题
assert(false);
}
}
return true;
}
4.树的旋转
右单旋
右单旋,说明数据在左边,左边高
旋转,按照字面意思,联想一下意味着60这个数据它肯定是要下来的,意味着subL要上去,因为都是parent的左子树所以数据都是比parent小,把它连接到parent的左边,而subL则升上去由于parent更大所以只能连接在subL的右边
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
subLR->_parent = parent;
Node* parentParent = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
if (parent == _root)
{
_root = subL;
_root->_parent = nullptr;
}
else
{
if (parentParent->_left == parent)
{
parentParent->_left = subL;
}
else
{
parentParent->_right = subL;
}
subL->_parent = parentParent;
}
subR->_bf = parent->_bf = 0;
}
左单旋
和上面的原理就是一样的。
先把subRL连接到parent的右边,再把parent连接到sunR的左边
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subLR
if (subRL)
{
subLR->_parent = parent
}
Node* parentParent == parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (parent == nullptr)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parent = parentParent->_left;
}
else
{
parentParent->_right = subR;
}
subR->_parent = parentParent;
}
subL->_bf = parent->_bf = 0;
}
此时我们发现了了一个问题,如果是subRL有数据
按照上面的旋转方法,它变成下面这样,此时它依然不平衡,这样的情况该怎么办
先右旋再左旋
为了应对这样的情况我们可以先把subR来一个右单旋,再把parent来一个左单旋
先右单旋,变为下图
N代表空
再接着左单旋
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(subR);
RotateL(parent);
if (bf == 1)
{
parent->_bf = -1;
subR->_bf = 0;
subRL->_bf = 0;
}
else if (bf == 0)
{
parent->_bf = 0;
subR->_bf = 0;
subRL->_bf = 0;
}
else if (bf == -1)
{
parent->_bf = 0;
subR->_bf = 1;
subRL->_bf = 0;
}
else
{
assert(false);
}
}
先左旋再右旋
和上面的原理是一样的
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
//旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节
//点的平衡因子
int bf = subLR->_bf;
RotateL(subL);
RotateR(parent);
if (bf == 1)
{
parent->_bf = 0;
subL->_bf = -1;
subLR->_bf = 0;
}
else if (bf == 0)
{
parent->_bf = 0;
subL->_bf = 0;
subLR->_bf = 0;
}
else if (bf == -1)
{
parent->_bf = 1;
subL->_bf = 0;
subLR->_bf = 0;
}
else
{
assert(false);
}
}
5.AVL树的性能
AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 log N 。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。