好久没出去旅游啦!森森决定去 Z 省旅游一下。
Z 省有 n 座城市(从 1 到 n 编号)以及 m 条连接两座城市的有向旅行线路(例如自驾、长途汽车、火车、飞机、轮船等),每次经过一条旅行线路时都需要支付该线路的费用(但这个收费标准可能不止一种,例如车票跟机票一般不是一个价格)。
Z 省为了鼓励大家在省内多逛逛,推出了旅游金计划:在 i 号城市可以用 1 元现金兑换 ai 元旅游金(只要现金足够,可以无限次兑换)。城市间的交通即可以使用现金支付路费,也可以用旅游金支付。具体来说,当通过第 j 条旅行线路时,可以用 cj 元现金或 dj 元旅游金支付路费。注意: 每次只能选择一种支付方式,不可同时使用现金和旅游金混合支付。但对于不同的线路,旅客可以自由选择不同的支付方式。
森森决定从 1 号城市出发,到 n 号城市去。他打算在出发前准备一些现金,并在途中的某个城市将剩余现金 全部 换成旅游金后继续旅游,直到到达 n 号城市为止。当然,他也可以选择在 1 号城市就兑换旅游金,或全部使用现金完成旅程。
Z 省政府会根据每个城市参与活动的情况调整汇率(即调整在某个城市 1 元现金能换多少旅游金)。现在你需要帮助森森计算一下,在每次调整之后最少需要携带多少现金才能完成他的旅程。
输入格式:
输入在第一行给出三个整数 n,m 与 q(1≤n≤105,1≤m≤2×105,1≤q≤105),依次表示城市的数量、旅行线路的数量以及汇率调整的次数。
接下来 m 行,每行给出四个整数 u,v,c 与 d(1≤u,v≤n,1≤c,d≤109),表示一条从 u 号城市通向 v 号城市的有向旅行线路。每次通过该线路需要支付 c 元现金或 d 元旅游金。数字间以空格分隔。输入保证从 1 号城市出发,一定可以通过若干条线路到达 n 号城市,但两城市间的旅行线路可能不止一条,对应不同的收费标准;也允许在城市内部游玩(即 u 和 v 相同)。
接下来的一行输入 n 个整数 a1,a2,⋯,an(1≤ai≤109),其中 ai 表示一开始在 i 号城市能用 1 元现金兑换 ai 个旅游金。数字间以空格分隔。
接下来 q 行描述汇率的调整。第 i 行输入两个整数 xi 与 ai′(1≤xi≤n,1≤ai′≤109),表示第 i 次汇率调整后,xi 号城市能用 1 元现金兑换 ai′ 个旅游金,而其它城市旅游金汇率不变。请注意:每次汇率调整都是在上一次汇率调整的基础上进行的。
输出格式:
对每一次汇率调整,在对应的一行中输出调整后森森至少需要准备多少现金,才能按他的计划从 1 号城市旅行到 n 号城市。
再次提醒:如果森森决定在途中的某个城市兑换旅游金,那么他必须将剩余现金全部、一次性兑换,剩下的旅途将完全使用旅游金支付。
输入样例:
6 11 3
1 2 3 5
1 3 8 4
2 4 4 6
3 1 8 6
1 3 10 8
2 3 2 8
3 4 5 3
3 5 10 7
3 3 2 3
4 6 10 12
5 6 10 6
3 4 5 2 5 100
1 2
2 1
1 17
输出样例:
8
8
1
思路:
先分别计算起点到每个点的现金消耗,每个点到终点的旅行币消耗(即存反图终点到每个点);
先遍历(1,2, .... , n)换钱需要的现金
再删除汇率更新前消耗的现金量,添加汇率更新后需要的现金量
输出目前最小的现金消耗;
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pii pair<ll,int>
#define me(a,b) memset(a,b,sizeof a)
ll n , m , T , idx , cnt;
const ll l = 400005;
const ll r = 100005;
const ll inf = 0x3f3f3f3f3f3f3f3f;
string s;
int er[r];
ll ne_1[l] , e_1[l] , w_1[l] , h_1[l];
ll ne_2[l] , e_2[l] , w_2[l] , h_2[l];
ll d_1[l] , d_2[l];
bool st[r];
void add_1(int a ,int b ,int c){
ne_1[idx] = h_1[a];
e_1[idx] = b;
w_1[idx] = c;
h_1[a] = idx ++;
}
void add_2(int a,int b,int c){
ne_2[cnt] = h_2[a];
e_2[cnt] = b;
w_2[cnt] = c;
h_2[a] = cnt ++;
}
void bfs_1(int a){
me(st,0);
for(int i = 1 ; i <= n ; i ++)d_1[i] = inf;
priority_queue<pii,vector<pii>,greater<pii> > q;
q.push({0,a}); d_1[a] = 0;
while(!q.empty()){
auto t = q.top().second;
q.pop();
if(st[t])continue;
st[t] = 1;
for(int i = h_1[t] ; i != -1 ; i = ne_1[i]){
int x = e_1[i];
if(d_1[x] <= d_1[t] + w_1[i])continue;
d_1[x] = d_1[t] + w_1[i];
q.push({d_1[x],x});
}
}
}
void bfs_2(int a){
me(st,0);
for(int i = 1 ; i <= n ; i ++)d_2[i] = inf;
priority_queue<pii,vector<pii>,greater<pii> > q;
q.push({0,a});
d_2[a] = 0;
while(!q.empty()){
int t = q.top().second;
q.pop();
if(st[t])continue;
st[t] = 1;
for(int i = h_2[t] ; ~ i ; i = ne_2[i]){
int x = e_2[i];
if(d_2[x] <= d_2[t] + w_2[i])continue;
d_2[x] = d_2[t] + w_2[i];
q.push({d_2[x],x});
}
}
}
int main(){
int q;
cin >> n >> m >> q;
idx = cnt = 0;//两个链式前向星的下标归零
me(h_1,-1);
me(h_2,-1);//初始化
while(m --){
int a , b , c , d;
cin >> a >> b >> c >> d;
add_1( a , b , c);//第一个存使用现金的1 - > n
add_2( b , a , d);//第二个存使用旅行币n - > 1
}
bfs_1(1);
bfs_2(n);
//跑出1->n现金消耗和(1,2,3,4...,n->n)的旅行币消耗
//分别存入d_1 和 d_2
for(int i = 1 ; i <= n ; i ++)cin >> er[i];
//读取各个汇率
map<ll,int>mp;
for(int i = 1 ; i <= n ; i++){
if(d_1[i] == inf || d_2[i] == inf)continue;
mp[d_1[i] + (d_2[i] + (er[i] - 1))/er[i]]++;
}
//d_1[i] + (d_2[i] + (er[i] - 1))/er[i]等于
// 1->i的现金消耗 + i->n的旅行币消耗/汇率
while(q --){
int a , b;
cin >> a >> b;
if(d_1[a] != inf && d_2[a] != inf){
mp[d_1[a] + ((d_2[a] + (er[a] - 1))/er[a])]--;
//删除原汇率时,在这个城市换钱所需要的现金
if(mp[d_1[a] + ((d_2[a] + (er[a] - 1))/er[a])] == 0){
mp.erase(d_1[a] + ((d_2[a] + (er[a] - 1))/er[a]));
}
//如果该现金的情况变为0,就在map中删除这个
er[a] = b;
//添加新汇率时目前的现金消耗
mp[d_1[a] + (d_2[a] + (er[a] - 1))/er[a]]++;
}
for(auto i : mp){
cout << i.first << endl;
break;
}
//输出最小的现金消耗
}
}