本来毫无计划,不知道刷什么题,好多算法都是只知道一点点,入门级别,本来是要刷一道双线dp题,结果学长说我们自己oj就有这道题,唉~自己oj的题都没透,还想去别的oj。。。。。
之前做了一道记忆化搜索的题,学长就建议我把我们oj上的这道滑雪题做一下(学长说滑雪,我莫名其妙的搜了个划水,o(╯□╰)o,老想着划水,)今天刚好想起来了,就把这道题给A了。
本来初看这道题没想法,因为如果想要直接找到结果的话肯定要找到能得到最长区域长度的最高点,可是直接找这个点的话根本无从找起,然后自己换了个思路想,因为每个点都为一段区域上的点,所以对这个点的上下左右找比自己小的构成一段区域,同时再找比自己大的构成一段区域,这两段区域加起来就是这个点对应的区域长度,遍历一遍同时取最大值即可,可是这样的话,从时间复杂度考虑可能TLE,需要优化,后来又想,无需找比自己大那段区域,因为在遍历的同时已经找过最大的那个点,所以无需考虑,然后就要考虑从上下左右找比自己小的构成一段区域,起初不知道该找那一个点,就想到了只找比这个点稍微小的那个点,这样可以保证每次都找到的是最长取区域(陷入了思维误区,是错的o(╯□╰)o),果然自己交了发就wa啊wa。自己刚开始还不知道哪里错了,自己想了几组数据测出了自己的误区,终于想明白了,不应该那样,应该在搜的时候就将所有比自己小的给搜一遍,然后找max区域长度,然后赋给这个点。同时之后如果有比这个点大的点搜到这个点的时候,直接将这个点的值return给比这个点打的点,不用再搜了。
skiing
时间限制:3000 ms | 内存限制:65535 KB
难度:5
描述
Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael想知道载一个区域中最长底滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-…-3-2-1更长。事实上,这是最长的一条。
输入
第一行表示有几组测试数据,输入的第二行表示区域的行数R和列数C(1 <= R,C <= 100)。下面是R行,每行有C个整数,代表高度h,0<=h<=10000。
后面是下一组数据;
输出
输出最长区域的长度。
样例输入
1
5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
样例输出
25
#include<stdio.h>
#include<string.h>
#define max(a,b) a>b?a:b
int a[110][110],b[110][110],xx,yy,fx[4][2]={1,0,0,1,-1,0,0,-1}; //a数组用来存对应的点,b数组用来存区域长度
int dfs(int x,int y)
{
if(b[x][y]) return b[x][y]; //若x,y点已经搜过了,因为b[x][y]对应的已经是这个点所对应的最长区域长度,所以无需再搜,直接return给上一层
int i,maxx=0;
for(i=0;i<4;i++)
{
if(a[x+fx[i][0]][y+fx[i][1]]<a[x][y]&&x+fx[i][0]>=1&&x+fx[i][0]<=xx&&y+fx[i][1]>=1&&y+fx[i][1]<=yy) //若上下左右找到比这个点对应的值要小的点:
maxx=dfs(x+fx[i][0],y+fx[i][1]),b[x][y]=max(b[x][y],maxx);//就接着将这个点搜一遍,并取最大的值赋给b[x][y]
}
b[x][y]++; //因为自己算一个点,所以++
return b[x][y]; //返回这时对应的值
}
int main()
{
int nn;
scanf("%d",&nn);
while(nn--)
{
memset(b,0,sizeof(b));
int i,j,maxx=0;
scanf("%d%d",&xx,&yy);
for(i=1;i<=xx;i++)
for(j=1;j<=yy;j++)
scanf("%d",&a[i][j]);
for(i=1;i<=xx;i++)
for(j=1;j<=yy;j++)
maxx=max(maxx,dfs(i,j)); //遍历一遍并取最大值
printf("%d\n",maxx);
}
}