1. Fibonacci Number

1. Fibonacci Number 

       0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610 … 

       f[i] = f[i - 1] + f[i - 2]


F[n] =  ((1 + \sqrt{5})^n - (1 - \sqrt{5})^n) / (2^n\cdot \sqrt{5}) = 1 / \sqrt{5}\cdot ((1 + \sqrt{5}) / 2)^n

没什么好说的,有时候记得用高精度

有时候还需要矩阵快速幂

1.递归    时间复杂度O(2^n)

int f(int n){  
    if(n == 1 || n == 2){  
        return 1;  
    }  
    return f(n - 1) + f(n - 2);  
}

2.循环    时间复杂度O(n)

public int f(int n) {  
    // write code here  
    int f0 = 1;  
    int f1 = 1;  
    int f2 = 0;  
  
    for(int i = 2; i < n; i++){  
        f2 = f0 + f1;  
        f0 = f1;  
        f1 = f2;  
    }  
    return f2;  
} 

3.矩阵求解    时间复杂度O(logn)
 

    斐波那契的递推公式可以表示成如下矩阵形式:

     根据矩阵的分治算法,可以在O(logn)时间内算出结果。

public class Fibonacci {
	static long[][] f = new long[][]{{0,1},{1,1}};
  	public int getNthNumber(int n) {
  	    if(n == 0)
  	        return 1;
  	    if(n == 1)
  	        return 1;
  	    f = pow(n,f);
  	      	    return (int) (f[1][1]%1000000007);
  	}
  	private long[][] pow(int n,long[][] f){//矩阵的幂函数
 	    if(n == 1)
  	        return f;
            	    if(n == 2)
	        return fun(f,f);
   	  	    if((n&1)==0){//偶数
  	        f = pow(n/2,f);
  	        return fun(f, f);
  	    }
	    else
 	        return fun(pow(n/2,f),pow(n/2 + 1,f));
   	}
  	private long[][] fun(long[][] f,long[][] m){
  	    long[][] temp = new long[2][2];
  	    temp[0][0] = (f[0][0]*m[0][0] + f[0][1]*m[1][0]);
	    temp[0][1] = (f[0][0]*m[0][1] + f[0][1]*m[1][1]);
  	    temp[1][0] = (f[1][0]*m[0][0] + f[1][1]*m[1][0]);
  	    temp[1][1] = (f[1][0]*m[0][1] + f[1][1]*m[1][1])%1000000007;
   	    return temp;
  	}
  }

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值