二次剩余 数论 勒让德

在数论中,特别在同余理论里,一个整数X对另一个整数p二次剩余(英语:Quadratic residue)指X的平方X^2除以p得到的余数。

当存在某个X,式子X^2 \equiv d (mod $ $ p)成立时,称d是模p的二次剩余”

当对任意XX^2 \equiv d (mod $ $ p)不成立时,称“d是模p的二次非剩余”

质数的二次剩余

对于质数2,每个整数都是它的二次剩余。

以下讨论p是奇质数的情况:

对于XX^2 \equiv d (mod $ $ p) 而言,能满足“d是模 p的二次剩余”的 d共有\frac{p + 1}{2}个(剩余类),分别为:0^2, 1^2, 2^2,...(\frac{p -1}{2})^2(0计算在内)

此外是\frac{p-1}{2}个二次非剩余。但在很多情况下,我们只考虑乘法群Z/pZ,因此不将0包括在内这样,每个二次剩余的乘法逆元仍然是二次剩余;二次非剩余的乘法逆元仍然是二次非剩余。

二次剩余的个数与二次非剩余的个数相等,都是\frac{p-1}{2}。此外,两个二次非剩余的乘积是二次剩余,二次剩余和二次非剩余的乘积是二次非剩余。

应用二次互反论可以知道,当p模4余1时,-1是p的二次剩余;如果p模4余3,那么,-1是p的二次非剩余。

要知道d是否为模p的二次剩余,可以运用欧拉判别法(或叫欧拉准则)。

另外,若找到一个a,使得a^2-n^2 = w,且\left ( \frac{w}{p} \right ) = -1,则x = (a + \sqrt{w}) ^ {\frac{p+1}{2}}x^2 \equiv n (mod$ $p)注意 (a + \sqrt{w})这里的为数域扩张 类似于模意义下的虚数 要重定义运算法则

证明:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值