在数论中,特别在同余理论里,一个整数对另一个整数
的二次剩余(英语:Quadratic residue)指
的平方
除以
得到的余数。
当存在某个,式子
成立时,称“
是模
的二次剩余”
当对任意,
不成立时,称“d是模p的二次非剩余”
质数的二次剩余
对于质数2,每个整数都是它的二次剩余。
以下讨论是奇质数的情况:
对于,
而言,能满足“
是模
的二次剩余”的
共有
个(剩余类),分别为:
(0计算在内)
此外是个二次非剩余。
但在很多情况下,我们只考虑乘法群Z/pZ,因此不将0包括在内。这样,每个二次剩余的乘法逆元仍然是二次剩余;二次非剩余的乘法逆元仍然是二次非剩余。
二次剩余的个数与二次非剩余的个数相等,都是。此外,两个二次非剩余的乘积是二次剩余,二次剩余和二次非剩余的乘积是二次非剩余。
应用二次互反论可以知道,当模4余1时,-1是
的二次剩余;如果
模4余3,那么,-1是
的二次非剩余。
要知道d是否为模p的二次剩余,可以运用欧拉判别法(或叫欧拉准则)。
另外,若找到一个a,使得,且
,则
为
注意
这里的为数域扩张 类似于模意义下的虚数 要重定义运算法则
证明: