Leetcode 392.判断子序列
题目链接:392 判断子序列
题干:给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,
"ace"
是"abcde"
的一个子序列,而"aec"
不是)。
思考:动态规划。此题和1143 最长公共子序列非常相似,用1143题的代码也能AC。按1143题的代码 逻辑上可以理解为寻找两个字符串的公共子序列长度,如果子序列长度不等于字符串s的长度则说明在字符串t中找不到与字符串s匹配的子序列,反则存在。
当然如果从题干理解,字符串s不能删除(即其中每个元素都必须考虑),因此当前两元素不相等时,递推公式应该为dp[i][j] = dp[i][j - 1];
代码:
class Solution {
public:
bool isSubsequence(string s, string t) {
//dp[i][j]: 字符串s的处理区间[0, i - 1]与 字符串t的处理区间[0, j - 1],其中的最长公共子序列长度
vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
for (int i = 1; i <= s.size(); i++) { //遍历字符串s
for (int j = 1; j <= t.size(); j++) { //遍历字符串t
if (s[i - 1] == t[j - 1])
dp[i][j] = dp[i - 1][j - 1] + 1;
else
// dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); //逻辑上 两字符串元素均可不考虑(删除)
dp[i][j] = dp[i][j - 1]; //逻辑上 仅字符串t元素可不考虑(删除)
}
}
return dp[s.size()][t.size()] == s.size();
}
};
思考:双指针法。慢指针指向模式串s中的字符,快指针指向主串t中的字符。当两指针指向的字符相同则两指针都往后移动,反正仅快指针移动。
如此处理直至快指针移动到主串t尾部之后 或 慢指针移动到模式串s尾部之后。最后若慢指针指向模式串s尾部则找到匹配的子序列,反则否之。
代码:
class Solution {
public:
bool isSubsequence(string s, string t) {
int slow = 0; //慢指针 指向字符串s
for (int fast = 0; fast < t.size() && slow < s.size(); fast++) { //快指针 指向字符串t
if (s[slow] == t[fast])
slow++; //慢指针和快指针指向字符匹配 则慢指针往后移
}
return slow == s.size();
}
};
Leetcode 115.不同的子序列
题目链接:115 不同的子序列
题干:给你两个字符串
s
和t
,统计并返回在s
的 子序列 中t
出现的个数,结果需要对 109 + 7 取模。
思考:动态规划。难点:理解将问题差分为不同处理区间的子序列个数。
- 确定dp数组(dp table)以及下标的含义
dp[i][j]:以下标i - 1结尾的主串s含以下标j - 1结尾的模式串t的子序列个数
为什么i-1,j-1 这么定义,在718. 最长重复子数组中讲过理由。
- 确定递推公式
遍历两字符串,将两字符串的每个字符都就行比较。因此要分析以下两种情况:
- s[i - 1] 与 t[j - 1]相等
- s[i - 1] 与 t[j - 1] 不相等
当s[i - 1] 与 t[j - 1]相等时,说明找到匹配的字符。dp[i][j]可以有两部分组成。
- 一部分是用s[i - 1]来匹配,个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。
- 一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。即考虑当前s子串(除最后一位字母)和模式串t子串的子序列匹配情况。
所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]。所以递推公式为:dp[i][j] = dp[i - 1][j];
- dp数组如何初始化
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,因此 dp[i][0] 和dp[0][j]是一定要初始化的。
从定义来看,dp[i][0]相当于以下标i - 1结尾的主串s含空模式串t的子序列个数,默认为1。
dp[0][j]相当于以空主串s含以下标j - 1结尾的模式串t的子序列个数,肯定为0。
- 确定遍历顺序
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。
- 举例推导dp数组
举例:s:"baegg",t:"bag",推导dp数组状态如下:
代码:
class Solution {
public:
int numDistinct(string s, string t) {
//dp[i][j]:以下标i - 1结尾的主串s含以下标j - 1结尾的模式串t的子序列个数
vector<vector<uint64_t>> dp(s.size() + 1, vector<uint64_t>(t.size() + 1));
for (int i = 0; i <= s.size(); i++) //模式串子串为空 则任意主串子串均含一个
dp[i][0] = 1;
for (int j = 1; j <= t.size(); j++) //主串子串为空 则任意模式串子串均不含
dp[0][j] = 0;
for (int i = 1; i <= s.size(); i++) { //遍历主串s
for (int j = 1; j <= t.size(); j++) { //遍历模式串t
if (s[i - 1] == t[j - 1])
//若当前两位置字符相同 则当前找到的匹配子序列 加上主串之前找到的匹配子序列 可赋值给当前dp[i][j]
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
else
//若当前两位置字符不相同,则将主串之前找到的匹配子序列 赋值给当前dp[i][j]
dp[i][j] = dp[i - 1][j];
}
}
return dp[s.size()][t.size()];
}
};