Bachgold Problem CodeForces - 749A 水题

本文介绍了一个简单的Bachgold问题,要求将正整数n表示为最多质数之和。输入一个整数n,输出可以构成n的最大质数数量及其组合。解决方案分为偶数和奇数情况,通过2和3进行组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

睡前水题-贪心

Bachgold problem is very easy to formulate. Given a positive integer n represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1.

Recall that integer k is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and k.

Input
The only line of the input contains a single integer n (2 ≤ n ≤ 100 000).

Output
The first line of the output contains a single integer k — maximum possible number of primes in representation.

The second line should contain k primes with their sum equal to n. You can print them in any order. If there are several optimal solution, print any of them.
题意 : 将一个数分解为n个质数的和 输出n和这些指数
思路: 可分为偶数(由2组成) 奇数(由2和一个3组成)分开即可

代码:

#include<bits/stdc++.h>
using namespace std;

int main(){
    int n;
    cin >> n;
    if(n >= 3){
        cout << n/2 << endl;
        if(n % 2 == 0){
            for(int i = 0; i < n/2-1; i++)
                cout << 2 <<' ';
            cout <<2 << endl;
        }
        else{
            for(int i = 0; i < n/2-1; i++)
                cout <<2 <<' ';
            cout << 3 << endl;
        }
    }
    else{
        cout << 1 <<endl;
        cout << n << endl;
    }

}

CodeForces - 749C Voting 是一道有趣的计数,它的意是给定了两个候选人 A 和 B 的得票情况,票数相等的情况下,我们需要按照一定的规则进行投票,直到最后一个候选人胜出。具体来说,如果当前的票数相等,我们需要按照轮流投票的规则,每次投给 A 或者 B,直到最后一个候选人胜出。如果某一时刻 A 的票数比 B 多 2 票以上,那么 A 就直接胜出,同样的,如果 B 的票数比 A 多 2 票以上,那么 B 就直接胜出。 我们可以用两个变量 sa 和 sb 来表示 A 和 B 的票数,然后依次遍历每一个投票者的选择。如果当前 A 和 B 的票数相等,我们就按照轮流投票的规则,每次投给 A 或者 B,直到最后一个候选人胜出。如果 A 和 B 的票数相差 2 票以上,那么直接输出胜出者的名字。最后一定会有一个候选人胜出,因为在每一轮投票之后,A 和 B 的票数都会有所增加,最终一定会有一个候选人胜出。 下面是该问的 Java 代码实现: ``` import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); String s = sc.next(); int sa = 0, sb = 0, pa = 0, pb = 0; boolean[] sign = new boolean[n]; for (int i = 0; i < n; i++) { if (s.charAt(i) == 'D') sa++; else sb++; } while (sa > 0 && sb > 0) { for (int i = 0; i < n; i++) { if (sign[i]) continue; if (s.charAt(i) == 'D') { if (pb > 0) { pb--; sa--; sign[i] = true; } else pa++; } else { if (pa > 0) { pa--; sb--; sign[i] = true; } else pb++; } if (sa == 0 || sb == 0) break; } } if (sa == 0) System.out.println("R"); else System.out.println("D"); } } ``` 该代码的时间复杂度为 $O(n)$,空间复杂度为 $O(n)$,其中 n 表示投票者的数量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值