睡前水题-贪心
Bachgold problem is very easy to formulate. Given a positive integer n represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1.
Recall that integer k is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and k.
Input
The only line of the input contains a single integer n (2 ≤ n ≤ 100 000).
Output
The first line of the output contains a single integer k — maximum possible number of primes in representation.
The second line should contain k primes with their sum equal to n. You can print them in any order. If there are several optimal solution, print any of them.
题意 : 将一个数分解为n个质数的和 输出n和这些指数
思路: 可分为偶数(由2组成) 奇数(由2和一个3组成)分开即可
代码:
#include<bits/stdc++.h>
using namespace std;
int main(){
int n;
cin >> n;
if(n >= 3){
cout << n/2 << endl;
if(n % 2 == 0){
for(int i = 0; i < n/2-1; i++)
cout << 2 <<' ';
cout <<2 << endl;
}
else{
for(int i = 0; i < n/2-1; i++)
cout <<2 <<' ';
cout << 3 << endl;
}
}
else{
cout << 1 <<endl;
cout << n << endl;
}
}