一只青蛙一次可以跳上1级台阶也可以跳上2级求该青蛙跳上一个n级的台阶总共有多少种跳法?

一只青蛙一次可以跳上1级台阶也可以跳上2级求该青蛙跳上一个n级的台阶总共有多少种跳法?
解题思路 :每次跳1到n,那么如果是n阶台阶,一次就可能跳1~n阶(话说n=1000,青蛙腿肯定绑火箭了),乍一看很复杂,可以将前面几种情况列出来,就可以发现规律。

台阶数--------------------------------------次数
【1】 --------------------------------------1
【2】---------------------------------------2
【3】 --------------------------------------4
【4】 --------------------------------------8
【5】 --------------------------------------16
【6】 -------------------------------------- 32
【7】----------------------------------------64
由此我们可以看出n阶总的次数就是n-1次数的二倍,也就是一个斐波那切数列的问题。
用递归可以很好的解决这个问题
C++代码实现如下

#include<iostream>
using namespace std;
int fun(int n) {
	if (n <= 1)
		return 1;
	else
	{
		return 2 * fun(n - 1);
	}
}
void test2() {
	int n,m;
	cin >> n;
	m = fun(n);
	cout <<m<< endl;
}
int main() {
	test2();
	system("pause");
	return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值