假定C,D,E,和F是给定的n x n 实矩阵。说明如何只计算三次实的 n x n 矩阵乘法就可以求出实的nxn矩阵A和B,使得(A+iB)=(C+iD)(E+iF).
只要计算三个矩阵:W=(C+D)(E-F), DE, CF.
因为A=CE-DF, B=DE+CF, W=(CE-DF)+DE-CF,所以A=W-CD+CF,B=DE+CF直接得出。
假定C,D,E,和F是给定的n x n 实矩阵。说明如何只计算三次实的 n x n 矩阵乘法就可以求出实的nxn矩阵A和B,使得(A+iB)=(C+iD)(E+iF).
只要计算三个矩阵:W=(C+D)(E-F), DE, CF.
因为A=CE-DF, B=DE+CF, W=(CE-DF)+DE-CF,所以A=W-CD+CF,B=DE+CF直接得出。