[C/C++] -- 搜索迷宫路径

DFS(深度优先搜索)和BFS(广度优先搜索)是两种常用的图遍历算法,它们在搜索图或树中的节点时有着不同的策略和特点。

  1. 深度优先搜索 (DFS):

    • 在DFS中,从起始节点开始,沿着一条路径尽可能深地搜索,直到到达叶子节点或者无法继续搜索为止,然后回溯到上一个节点,选择另一条路径继续搜索,直到所有节点都被访问。
    • DFS通常使用递归或者来实现,递归是自然而直观的实现方式,而使用栈可以避免递归的潜在问题(如栈溢出)。
    • DFS的优点是在搜索过程中不需要记录所有访问过的节点,因此占用的空间较少。
    • 适用于寻找深度路径,比如解决迷宫问题、寻找图的连通分量等。
  2. 广度优先搜索 (BFS):

    • 在BFS中,从起始节点开始,首先访问起始节点的所有邻居节点,然后依次访问这些邻居节点的邻居节点,以此类推,直到所有节点都被访问。
    • BFS通常使用队列来实现,保证了节点的访问顺序是按照距离起始节点的距离逐层递增的。
    • BFS的优点是可以找到起始节点到目标节点的最短路径,而且在无权图中具有最优性(即找到的第一个解就是最短路径)。
    • 适用于寻找最短路径,比如在迷宫中找到最短路径、在社交网络中找到两个人之间的最短关系链等。

1.深度优先遍历DFS

设计一个程序,能够对给定的迷宫进行路径搜索,并输出一条从起点到终点的路径。具体来说,程序需要实现以下功能:

  1. 接受用户输入的迷宫地图,包括迷宫的行数和列数,以及每个格子的状态(0 表示可通行,1 表示不可通行)。
  2. 使用深度优先搜索算法(DFS)对迷宫进行搜索,找到从起点到终点的一条路径。
  3. 输出搜索到的路径。

入栈以后,然后我们查看栈顶元素,是(0,0)这个节点。栈现在不为空,取栈顶元素,先看它右边能不能走,能走的话,就一直向右走,它右边是0,就入栈了。

_pMaze[0][0]._val == 1
    return;
_stack. Push(_pMaze[0][0]);//左上角节点入栈 
while (!_stack. Empty())//栈不为空 
	Node top = _stack. Top();

 如果栈顶元素的右边可以走的话,我们要把当前节点的右方向改成不能走,把右边节点的左方向改成不能走。因为不能走回头路,而且因为路子走不通回退后也不能继续走相同的死路。

//往右方向寻找
			if (_pMaze[x][y]._state[RIGHT] == YES)
			{
				_pMaze[x][y]._state[RIGHT] = NO;
				_pMaze[x][y + 1]._state[LEFT] = NO;
				_stack.push(_pMaze[x][y + 1]);
				continue;

深度遍历入栈后,不用判断之前节点的方向。continue后,重新取栈顶元素,继续进行判断。同理,如果右边不能走,下边可以走的话:

//往下方向寻找
			if (_pMaze[x][y]._state[DOWN] == YES)
			{
				_pMaze[x][y]._state[DOWN] = NO;
				_pMaze[x + 1][y]._state[UP] = NO;
				_stack.push(_pMaze[x + 1][y]);
				continue;
			}

 同理:左方向

//往左方向寻找
			if (_pMaze[x][y]._state[LEFT] == YES)
			{
				_pMaze[x][y]._state[LEFT] = NO;
				_pMaze[x][y - 1]._state[RIGHT] = NO;
				_stack.push(_pMaze[x][y - 1]);
				continue;
			}

如果栈顶元素判断完四个方向都不能走,就是到死路了,就把栈顶元素出栈。
然后再取栈顶元素,进行判断,如果它的4个方向都不能走,就出栈,如果栈为空,则迷宫无通路。如果有方向能走,就继续走下去。以此类推下去。但是,都要判断一下此节点是不是右下角的节点,如果是,就是找到通路了。

//已经找到右下角出口得迷宫路径
			if (x == _row - 1 && y == _col - 1)
			{
				return;
			}

 完整代码:

#include <iostream>
#include <stack>
using namespace std;

//定义迷宫每一个节点的四个方向
const int RIGHT = 0;//右 
const int DOWN = 1;//下 
const int LEFT = 2;//左 
const int UP = 3;//上 

//迷宫每一个节点方向的数量
const int WAY_NUM = 4;

//定义节点行走状态
const int YES = 4;//当前方向可以走 
const int NO = 5;//当前方向不能走 

//迷宫
class Maze
{
public:
	//初始化迷宫,根据用户输入的行列数,生成存储迷宫路径信息的二维数组
	Maze(int row, int col)
		:_row(row)
		, _col(col)
	{
		_pMaze = new Node*[_row];//注意元素类型是Node 
		for (int i = 0; i < _row; ++i)
		{
			_pMaze[i] = new Node[_col];
		}
	}

	//初始化迷宫路径节点信息
	void initNode(int x, int y, int val)
	{
		_pMaze[x][y]._x = x;
		_pMaze[x][y]._y = y;
		_pMaze[x][y]._val = val;
		//节点四个方向默认的初始化都为不能走 
		for (int i = 0; i < WAY_NUM; ++i)
		{
			_pMaze[x][y]._state[i] = NO;
		}
	}

	//初始化迷宫0节点四个方向的行走状态信息 当前节点右下左上,如果是0,改成可以走 
	void setNodeState()
	{
		for (int i = 0; i < _row; ++i)
		{
			for (int j = 0; j < _col; ++j)
			{
				if (_pMaze[i][j]._val == 1)
				{
					continue;//不用调整了,因为走不到值为1的节点 
				}
				
                //j不能取到最后一列,不然就判断越界了 
				if (j < _col - 1 && _pMaze[i][j + 1]._val == 0)
				//逻辑&,是先计算左边的表达式,左边如果是false,右边就不用计算了 
				{
					_pMaze[i][j]._state[RIGHT] = YES;
				}

				if (i < _row - 1 && _pMaze[i + 1][j]._val == 0)
				{
					_pMaze[i][j]._state[DOWN] = YES;
				}
				
                //j不用取第一类,因为本身就不能走 
				if (j > 0 && _pMaze[i][j - 1]._val == 0)
				{
					_pMaze[i][j]._state[LEFT] = YES;
				}

				if (i > 0 && _pMaze[i - 1][j]._val == 0)
				{
					_pMaze[i][j]._state[UP] = YES;
				}
			}
		}
	}

	//深度搜索迷宫路径
	void searchMazePath()
	{
		if (_pMaze[0][0]._val == 1)
		{
			return;
		}
		_stack.push(_pMaze[0][0]);//左上角节点入栈 

		while (!_stack.empty())//栈不为空 
		{
			Node top = _stack.top();
			int x = top._x;
			int y = top._y;

			//已经找到右下角出口得迷宫路径
			if (x == _row - 1 && y == _col - 1)
			{
				return;
			}

			//往右方向寻找
			if (_pMaze[x][y]._state[RIGHT] == YES)
			{
				_pMaze[x][y]._state[RIGHT] = NO;
				_pMaze[x][y + 1]._state[LEFT] = NO;
				_stack.push(_pMaze[x][y + 1]);
				continue;
			}

			//往下方向寻找
			if (_pMaze[x][y]._state[DOWN] == YES)
			{
				_pMaze[x][y]._state[DOWN] = NO;
				_pMaze[x + 1][y]._state[UP] = NO;
				_stack.push(_pMaze[x + 1][y]);
				continue;
			}

			//往左方向寻找
			if (_pMaze[x][y]._state[LEFT] == YES)
			{
				_pMaze[x][y]._state[LEFT] = NO;
				_pMaze[x][y - 1]._state[RIGHT] = NO;
				_stack.push(_pMaze[x][y - 1]);
				continue;
			}

			//往上方向寻找
			if (_pMaze[x][y]._state[UP] == YES)
			{
				_pMaze[x][y]._state[UP] = NO;
				_pMaze[x - 1][y]._state[DOWN] = NO;
				_stack.push(_pMaze[x - 1][y]);
				continue;
			}

			_stack.pop();
		}
	}

	//打印迷宫路径搜索结果
	void showMazePath()
	{
		if (_stack.empty())
		{
			cout << "不存在一条迷宫路径!" << endl;
		}
		else
		{
			while (!_stack.empty())//栈不为空,取出节点坐标,相应值调整为* 
			{
				Node top = _stack.top();
				_pMaze[top._x][top._y]._val = '*';
				_stack.pop();
			}

			for (int i = 0; i < _row; ++i)//打印迷宫
			{
				for (int j = 0; j < _col; ++j)
				{
					if (_pMaze[i][j]._val == '*')
					{
						cout << "* ";
					}
					else
					{
						cout << _pMaze[i][j]._val << " ";
					}
				}
				cout << endl;
			}
		}
	}
private:
	//定义迷宫节点路径信息
	struct Node
	{
		int _x;//节点的横坐标 
		int _y;//节点的纵坐标 
		int _val;//节点的值
		int _state[WAY_NUM];//记录节点四个方向的状态(左右上下)
		//4个元素位置(左右上下),存储yes或者no 
	};

	Node **_pMaze;//动态生成迷宫路径(动态开辟二维数组) 
	int _row;//迷宫的行 
	int _col;//迷宫的列 
	stack<Node> _stack;//栈结构,辅助深度搜索迷宫路径
};

int main()
{
	cout << "请输入迷宫的行列数(例如:10 10):";
	int row, col, data;
	cin >> row >> col;

	Maze maze(row, col);//创建迷宫对象

	cout << "请输入迷宫的路径信息(0表示可以走,1表示不能走):" << endl;
	for (int i = 0; i < row; ++i)//只能获取i,j和data值,节点的4个方向的行走状态还不能初始化 
	{
		for (int j = 0; j < col; ++j)
		{
			cin >> data;
			//可以初始化迷宫节点的基本信息
			maze.initNode(i, j, data);
		}
	}

	//开始设置所有节点的四个方向的状态
	maze.setNodeState();

	//开始从左上角搜索迷宫的路径信息了
	maze.searchMazePath();

	//打印迷宫路径搜索的结果
	maze.showMazePath();

	return 0;
}

 

 2.广度优先遍历BFS

#include <iostream>
#include <queue>
#include <vector>
using namespace std;

//定义方向
const int RIGHT = 0;
const int DOWN = 1;
const int LEFT = 2;
const int UP = 3;
const int WAY_NUM = 4;

//定义行走状态
const int YES = 4;
const int NO = 5;

//迷宫
class Maze
{
public:
	Maze(int row, int col)
		:_row(row)
		, _col(col)
	{
		_pMaze = new Node*[_row];//开辟迷宫二维数组 
		for (int i = 0; i < _row; ++i)
		{
			_pMaze[i] = new Node[_col];
		}

		//node._x*_row + node._y
		_pPath.resize(_row * _col);//辅助数组开辟空间 
	}

	void initNode(int x, int y, int val)//初始化为No 
	{
		_pMaze[x][y]._x = x;
		_pMaze[x][y]._y = y;
		_pMaze[x][y]._val = val;
		for (int i = 0; i < WAY_NUM; ++i)
		{
			_pMaze[x][y]._state[i] = NO;
		}
	}

	void setNodeState()//设置迷宫行走状态 
	{
		for (int i = 0; i < _row; ++i)
		{
			for (int j = 0; j < _col; ++j)
			{
				if (_pMaze[i][j]._val == 1)
				{
					continue;
				}

				if (j < _col - 1 && _pMaze[i][j + 1]._val == 0)
				{
					_pMaze[i][j]._state[RIGHT] = YES;
				}

				if (i < _row - 1 && _pMaze[i + 1][j]._val == 0)
				{
					_pMaze[i][j]._state[DOWN] = YES;
				}

				if (j > 0 && _pMaze[i][j - 1]._val == 0)
				{
					_pMaze[i][j]._state[LEFT] = YES;
				}

				if (i > 0 && _pMaze[i - 1][j]._val == 0)
				{
					_pMaze[i][j]._state[UP] = YES;
				}
			}
		}
	}

	void searchMazePath()//广度优先遍历搜索 
	{
		if (_pMaze[0][0]._val == 1)
		{
			return;
		}
		_queue.push(_pMaze[0][0]);//入口节点入队 

		while (!_queue.empty())//队列不为空 
		{
			Node front = _queue.front();//获取队头元素 
			int x = front._x;
			int y = front._y;

			//右方向
			if (_pMaze[x][y]._state[RIGHT] == YES)
			{
				_pMaze[x][y]._state[RIGHT] = NO;
				_pMaze[x][y + 1]._state[LEFT] = NO;
				//在辅助数组中记录一下节点的行走信息
				_pPath[x*_row + y + 1] = _pMaze[x][y];
				_queue.push(_pMaze[x][y + 1]);
				if (check(_pMaze[x][y + 1]))
					return;
			}

			//下方向
			if (_pMaze[x][y]._state[DOWN] == YES)
			{
				_pMaze[x][y]._state[DOWN] = NO;
				_pMaze[x + 1][y]._state[UP] = NO;
				_pPath[(x + 1)*_row + y] = _pMaze[x][y];
				_queue.push(_pMaze[x + 1][y]);
				if (check(_pMaze[x + 1][y]))
					return;
			}

			//左方向
			if (_pMaze[x][y]._state[LEFT] == YES)
			{
				_pMaze[x][y]._state[LEFT] = NO;
				_pMaze[x][y - 1]._state[RIGHT] = NO;
				_pPath[x*_row + y - 1] = _pMaze[x][y];
				_queue.push(_pMaze[x][y - 1]);
				if (check(_pMaze[x][y - 1]))
					return;
			}

			//上方向
			if (_pMaze[x][y]._state[UP] == YES)
			{
				_pMaze[x][y]._state[UP] = NO;
				_pMaze[x - 1][y]._state[DOWN] = NO;
				_pPath[(x - 1)*_row + y] = _pMaze[x][y];
				_queue.push(_pMaze[x - 1][y]);
				if (check(_pMaze[x - 1][y]))
					return;
			}

			//当前节点出队列
			_queue.pop();
		}
	}

	void showMazePath()//打印迷宫 
	{
		if (_queue.empty())
		{
			cout << "不存在一条迷宫路径!" << endl;
		}
		else
		{
			//回溯寻找迷宫路径节点
			int x = _row - 1;
			int y = _col - 1;
			for (;;)
			{
				_pMaze[x][y]._val = '*';
				if (x == 0 && y == 0)
					break;
				Node node = _pPath[x*_row + y];
				x = node._x;
				y = node._y;
			}

			for (int i = 0; i < _row; ++i)
			{
				for (int j = 0; j < _col; ++j)
				{
					if (_pMaze[i][j]._val == '*')
					{
						cout << "* ";
					}
					else
					{
						cout << _pMaze[i][j]._val << " ";
					}
				}
				cout << endl;
			}
		}
	}
private:
	//定义迷宫节点路径信息
	struct Node
	{
		int _x;
		int _y;
		int _val;//节点的值
		int _state[WAY_NUM];//记录节点四个方向的状态
	};

	//检查是否是右下角的迷宫出口节点
	bool check(Node &node)
	{
		return node._x == _row - 1 && node._y == _col - 1;
	}

	Node **_pMaze;//动态开辟二维数组 
	int _row;//行 
	int _col;//列 
	queue<Node> _queue;//广度遍历依赖的队列结构
	vector<Node> _pPath;//记录广度优先遍历时,节点的行走信息,辅助数组 
};

int main()
{
	cout << "请输入迷宫的行列数(例如:10 10):";
	int row, col, data;
	cin >> row >> col;

	Maze maze(row, col);//创建迷宫对象

	cout << "请输入迷宫的路径信息(0表示可以走,1表示不能走):" << endl;
	for (int i = 0; i < row; ++i)
	{
		for (int j = 0; j < col; ++j)
		{
			cin >> data;
			//可以初始化迷宫节点的基本信息
			maze.initNode(i, j, data);
		}
	}

	//开始设置所有节点的四个方向的状态
	maze.setNodeState();

	//开始从左上角搜索迷宫的路径信息了
	maze.searchMazePath();

	//打印迷宫路径搜索的结果
	maze.showMazePath();

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值