试题编号: | 202309-1 |
试题名称: | 坐标变换(其一) |
时间限制: | 1.0s |
内存限制: | 512.0MB |
问题描述: | 问题描述 对于平面直角坐标系上的坐标 (x,y),小 P 定义了一个包含 n 个操作的序列 T=(t1,t2,⋯,tn)。其中每个操作 ti(1≤i≤n)包含两个参数 dxi 和 dyi,表示将坐标 (x,y) 平移至 (x+dxi,y+dyi) 处。 现给定 m 个初始坐标,试计算对每个坐标 (xj,yj)(1≤j≤m)依次进行 T 中 n 个操作后的最终坐标。 输入格式 从标准输入读入数据。 输入共 n+m+1 行。 输入的第一行包含空格分隔的两个正整数 n 和 m,分别表示操作和初始坐标个数。 接下来 n 行依次输入 n 个操作,其中第 i(1≤i≤n)行包含空格分隔的两个整数 dxi、dyi。 接下来 m 行依次输入 m 个坐标,其中第 j(1≤j≤m)行包含空格分隔的两个整数 xj、yj。 输出格式 输出到标准输出中。 输出共 m 行,其中第 j(1≤j≤m)行包含空格分隔的两个整数,表示初始坐标 (xj,yj) 经过 n 个操作后的位置。 样例输入 Data 样例输出 Data 样例说明 第一个坐标 (1,−1) 经过三次操作后变为 (21,−11);第二个坐标 (0,0) 经过三次操作后变为 (20,−10)。 评测用例规模与约定 全部的测试数据满足:n,m≤100,所有输入数据(x,y,dx,dy)均为整数且绝对值不超过 100000。 |
算法逻辑
这道题其实非常的难得,因为输入的“操作”最多就只有两个元素,所以我们可以直接用 if 语句降低时间复杂度
输入的实现
n, m = map(int,input().split())
def change_init():
result = [0] * 2
for i in range(n):
temp = []
temp = list(map(int,input().split()))
result[0] += temp[0]
result[1] += temp[1]
return result
def position_init():
result = []
for i in range(m):
result.append(list(map(int,input().split())))
return result
直接输入 n 和 m,而 change_init 和 position_init 分别为“操作”和“坐标点”的输入
每一个坐标点都执行了所有的操作,而操作是线性上的简单加减法而已,我们可以将所有操作的和作为总操作,随后加入到坐标即可
变更坐标
def function(change, arr):
for i in range(m):
arr[i][0] += change[0]
arr[i][1] += change[1]
print(arr[i][0], arr[i][1])
无需多言,就是指定的坐标加入操作的数字即可
完整代码
n, m = map(int,input().split())
def change_init():
result = [0] * 2
for i in range(n):
temp = []
temp = list(map(int,input().split()))
result[0] += temp[0]
result[1] += temp[1]
return result
def position_init():
result = []
for i in range(m):
result.append(list(map(int,input().split())))
return result
def function(change, arr):
for i in range(m):
arr[i][0] += change[0]
arr[i][1] += change[1]
print(arr[i][0], arr[i][1])
function(change_init(), position_init())
这期内容就是这么的简单,希望文章对你有所以帮助,也请你点击关注支持一下博主,当然,不要忘了最最重要的事情—— 自己动手试试吧,你可以做的更好!