LeetCode 第 213. House Robber II,题目难度 Medium。
一. 题目要求
你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。
示例 1:
输入: [2,3,2]
输出: 3
解释: 你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入: [1,2,3,1]
输出: 4
解释: 你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
二. 解题思路 & 代码实现
和第一题基本一样,变化的地方在于 第一个房屋和最后一个是相邻的,因此不能同时打劫。因此需要对是否打劫了第 1 个或最后一个房屋做标识,其他逻辑与 LeetCode 解题报告-198.House Robber 基本一致。
解法 1. 递归
class Solution {
private int[] nums;
public int rob(int[] nums) {
int len = nums.length;
if (len == 0) {
return 0;
}
if (len == 1) {
return nums[0];
}
if (len == 2) {
return Math.max(nums[0], nums[1]);
}
this.nums = nums;
return Math.max(helper(len-1, true),helper(len - 2, false));
}
// robLast 标识是否打劫最后一间房屋
int helper(int index, boolean robLast) {
if (index < 0) {
return 0;
}
// 如果打劫了最后一间则不能在打劫第 1 间。
if (index == 0) {
if (robLast) {
return 0;
}else {
return nums[0];
}
}
return Math.max(helper(index-1, robLast),helper(index - 2, robLast) + nums[index]) ;
}
}
和第一题一样,递归的解法虽然可以解决问题,但是因为存在大量的重复计算所以导致运行超时,接下来依然采用空间换时间的方式进行优化。
解法2. 递归优化-空间换时间
为了避免重复计算,我们需要将已经计算过的 index 索引出的最大收益值记录下来避免重复计算,和第一题不同的是因为存在 是否打劫最后一间房屋的问题,因此每个 index 都需要记录两个值。实现代码如下:
class Solution {
private int[] nums;
//记录打劫最后 1 间房屋时的收益
private Map<Integer, Integer> robLastMap = new HashMap<>();
// 记录不打劫最后 1 间房屋时的收益
private Map<Integer, Integer> notRobLastMap = new HashMap<>();
public int rob(int[] nums) {
int len = nums.length;
if (len == 0) {
return 0;
}
if (len == 1) {
return nums[0];
}
if (len == 2) {
return Math.max(nums[0], nums[1]);
}
this.nums = nums;
return Math.max(helper(len - 1, true), helper(len - 2, false));
}
int helper(int index, boolean robLast) {
if (index < 0) {
return 0;
}
if (index == 0) {
if (robLast) {
return 0;
} else {
return this.nums[0];
}
}
if (robLast) {
if (!robLastMap.containsKey(index)) {
robLastMap.put(index, Math.max(helper(index - 1, robLast), helper(index - 2, robLast) + nums[index]));
}
return robLastMap.get(index);
} else {
if (!notRobLastMap.containsKey(index)) {
notRobLastMap.put(index, Math.max(helper(index - 1, robLast), helper(index - 2, robLast) + nums[index]));
}
return notRobLastMap.get(index);
}
}
}
经过优化后的代码执行情况为:Runtime: 2 ms, faster than 5.14%,Memory Usage: 39.2 MB, less than 6.67%,依然存在优化空间。
解法3. 进一步优化
这是我在 discuss 里面看到的解法,解法 2 中使用了 Map 来存储中间值,相对于 Map 数组的查询和修改性能其实更高一些,因此可以数组代替 Map 进行操作。
实现代码如下:
public class Solution {
private int[] nums;
private int[] robLastArr;
private int[] notRobLastArr;
public int rob(int[] nums) {
int len = nums.length;
if (len == 0) {
return 0;
}
if (len == 1) {
return nums[0];
}
if (len == 2) {
return Math.max(nums[0], nums[1]);
}
this.nums = nums;
this.robLastArr = new int[len];
this.notRobLastArr = new int[len];
// 设置初始值为 -1,如果数组值为 -1 说明还没有计算过,如果不是则直接取值,避免重复计算
for (int i = 0; i < len; i++) {
robLastArr[i] = -1;
notRobLastArr[i] = -1;
}
return Math.max(helper(len - 1, true), helper(len - 2, false));
}
int helper(int index, boolean robLast) {
if (index < 0) {
return 0;
}
if (index == 0) {
if (robLast) {
return 0;
} else {
return this.nums[0];
}
}
if (robLast) {
if (robLastArr[index] == -1) {
robLastArr[index] = Math.max(helper(index - 1, robLast), helper(index - 2, robLast) + nums[index]);
}
return robLastArr[index];
} else {
if (notRobLastArr[index] == -1) {
notRobLastArr[index] = Math.max(helper(index - 1, robLast), helper(index - 2, robLast) + nums[index]);
}
return notRobLastArr[index];
}
}
}
这一版的运行情况为 Runtime: 0 ms, faster than 100.00%,Memory Usage: 38.9 MB, less than 6.67%,较第二版已经有了明显的提升。
三. 解题后记
整体思路和第一道题差不多,但因为多了首尾相邻的特殊条件因此需要做额外的判断,整体难度不算大,理解了第一题的解法这道题解出来也是比较简单的事情了。
老铁,都看到这了来一波点赞、评论、关注三连可好
我是 AhriJ邹同学,前后端、小程序、DevOps 都搞的炸栈工程师。博客持续更新,如果觉得写的不错,欢迎来一波老铁三连,不好的话也欢迎指正,互相学习,共同进步。