- 博客(3)
- 问答 (1)
- 收藏
- 关注
原创 Xinhui学习NLP的笔记本:基于注意力机制的机器翻译
在下面的文章中,我们要实现基于注意力机制并使用Transformer模型的机器翻译实现机器翻译,并对一些必要的储备知识进行探索,如1. 编码器-解码器结构;2. 束约束;3. 注意力机制;4. 基于带注意力机制的机器翻译;5. 基于Transformer实现机器翻译(日译中);6. 总结
2024-06-23 23:51:47 1053
原创 Xinhui学习NLP的笔记本:基于MLP/CNN的姓氏分类系统
鉴于英文水平一般,总结好好用中文写,作为本次实验和作业的一个句号。通过这次实验任务,我学习了如何使用多层感知器(MLP)进行姓氏分类,并探索不同类型的神经网络层对数据张量大小和形状的影响,其中主要是多层感知机网络和卷积神经网络。此外,还尝试在模型中添加了dropout层,观察它对分类结果的影响。在使用使用多层感知器进行姓氏分类时候,以一个简单的姓氏分类任务为例,使用PyTorch实现了一个多层感知器模型。首先,我们准备好姓氏分类的数据集。然后定义一个简单的多层感知器模型,用于姓氏分类。return x。
2024-06-09 18:09:44 557
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人