自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 问答 (1)
  • 收藏
  • 关注

原创 AHU-AISchool-NLP-Final复习指南

自己整理的AHU AI学院的自然语言处理课程(NLP)的期末复习指南~仅供参考

2024-07-04 15:17:37 802

原创 Xinhui学习NLP的笔记本:基于注意力机制的机器翻译

在下面的文章中,我们要实现基于注意力机制并使用Transformer模型的机器翻译实现机器翻译,并对一些必要的储备知识进行探索,如1. 编码器-解码器结构;2. 束约束;3. 注意力机制;4. 基于带注意力机制的机器翻译;5. 基于Transformer实现机器翻译(日译中);6. 总结

2024-06-23 23:51:47 1053

原创 Xinhui学习NLP的笔记本:基于MLP/CNN的姓氏分类系统

鉴于英文水平一般,总结好好用中文写,作为本次实验和作业的一个句号。通过这次实验任务,我学习了如何使用多层感知器(MLP)进行姓氏分类,并探索不同类型的神经网络层对数据张量大小和形状的影响,其中主要是多层感知机网络和卷积神经网络。此外,还尝试在模型中添加了dropout层,观察它对分类结果的影响。在使用使用多层感知器进行姓氏分类时候,以一个简单的姓氏分类任务为例,使用PyTorch实现了一个多层感知器模型。首先,我们准备好姓氏分类的数据集。然后定义一个简单的多层感知器模型,用于姓氏分类。return x。

2024-06-09 18:09:44 557

Xinhui学习NLP的笔记本:基于注意力机制的机器翻译

本项目所用的所有数据和语料。

2024-06-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除