1. 算法原理
Bellman-Ford 算法是用于单源最短路径的一种经典算法,不同于Dijkstra,该算法适用于边权可能为负的图。
核心思想:不断”松弛“。
松弛(Relaxation):不断尝试通过一条边更新路径长度,若能更优则更新。
负环:若第 n n n 次依旧能够进行松弛,说明存在负权环(负环)。
原理解释
松弛操作就像是将一条连接两端点的”紧绷“的尺子,通过不断插入新的尺子使得尺子间形成的”路线“越来越”松“。在存在
n
n
n 个结点的图中,最多可形成包含
n
−
1
n -1
n−1 条边的一条路径(如果没有环)。
负环检测机制的原理在于,当我们第
n
n
n 次尝试松弛时,此时若还能够松弛,意味着存在环并且为负权环使得能够通过继续且不断地”加边“来缩短路径距离。
为什么Dijkstra无法处理负权图?
Dijkstra 是基于贪心策略的算法,一旦访问某点就不再更新,也就是说若后续出现能够使路径再度缩短的负权边时,不会”回头“更新。
与Dijkstra对比
特性 | Dijkstra | Bellman-Ford |
---|---|---|
处理负权边 | 不可处理 | 可处理 |
复杂度 | O ( m log n ) O(m\log n) O(mlogn) (堆优化) | O ( n m ) O(nm) O(nm) |
思想 | 贪心 + 堆 | 动态规划式松弛 |
数据结构 | 优先队列 | 简单数组遍历 |
适用范围
特性 | Bellman-Ford |
---|---|
有向图 / 无向图 | Yes |
含负权边 | Yes |
检测负环 | Yes |
稀疏图 | Yes |
稠密图 | 不推荐(效率不高) |
2. 算法流程演示
为了更直观地看到最短路是如何被松弛出的,这里用一个小小的有向图来演示算法是如何工作的。
步骤 | 松弛边 | 距离变化 (A,B,C,D) | 说明 |
---|---|---|---|
初始 | - | [0, ∞, ∞, ∞] | 起点 A 初始化为 0 |
第1轮 | A→B | [0, 4, ∞, ∞] | B 从 ∞ 更新为 0+4=4 |
A→C | [0, 4, 5, ∞] | C 从 ∞ 更新为 0+5=5 | |
B→C | [0, 4, 2, ∞] | B(4)+(-2)=2 < 5,更新 C | |
C→D | [0, 4, 2, 5] | C(2)+3=5,更新 D | |
D→B | [0, 1, 2, 5] | D(5)+(-4)=1 < B(4),更新 B | |
第2轮 | B→C | [0, 1, -1, 5] | B(1)+(-2)=-1 < C(2),更新 C |
C→D | [0, 1, -1, 2] | C(-1)+3=2 < D(5),更新 D | |
D→B | [0, -2, -1, 2] | D(2)+(-4)=-2 < B(1),更新 B | |
第3轮 | B→C | [0, -2, -4, 2] | B(-2)+(-2)=-4 < C(-1),更新 C |
C→D | [0, -2, -4, -1] | C(-4)+3=-1 < D(2),更新 D | |
D→B | [0, -5, -4, -1] | D(-1)+(-4)=-5 < B(-2),更新 B | |
检测环 | B→C | -5+(-2) = -7 < C(-4) | 检测到负权环 |
3. 算法模板
实现步骤
- 初始化:设源点距离为
0
,其他点为无穷大
- 重复 n − 1 n-1 n−1 次松弛操作
- 第 n n n 次检查是否还能松弛(负环检测)
const int INF = 1e9;
int n, m;
int dist[N];
struct Edge {
int u, v, w;
}edges[N];
bool bellman_ford(int s) {
for (int i = 1; i <= n; ++i) dist[i] = INF;
dist[s] = 0;
for (int i = 1; i <= n; ++i) {
bool updated = false;
for (int j = 0; j < m; ++j) {
int u = edges[j].u, v = edges[j].v, w = edges[j].w;
if (dist[u] < INF && dist[v] > dist[u] + w) {
dist[v] = dist[u] + w;
updated = true;
if (i == n) return true; //若第 n 次依旧松弛,存在负环
}
}
if (!updated) break;//不能松弛,提前结束
}
return false;
}
存在两层循环,外层循环
n
n
n 次,内层循环
m
m
m 次,且所用空间取决于结点数和边数。
时间复杂度:
O
(
n
m
)
O(nm)
O(nm)
空间复杂度:
O
(
n
+
m
)
O(n + m)
O(n+m)
⚠️注意:确定图中无负环时才能提前终止循环,否则可能会导致无法判出负环。
3. 实际例题
题目描述
给定一个 n n n 个点的有向图,请求出图中是否存在从顶点 1 1 1 出发能到达的负环。
负环的定义是:一条边权之和为负数的回路。
输入格式
本题单测试点有多组测试数据。
输入的第一行是一个整数 T T T,表示测试数据的组数。对于每组数据的格式如下:
第一行有两个整数,分别表示图的点数 n n n 和接下来给出边信息的条数 m m m。
接下来 m m m 行,每行三个整数 u , v , w u, v, w u,v,w。
- 若 w ≥ 0 w \geq 0 w≥0,则表示存在一条从 u u u 至 v v v 边权为 w w w 的边,还存在一条从 v v v 至 u u u 边权为 w w w 的边。
- 若 w < 0 w < 0 w<0,则只表示存在一条从 u u u 至 v v v 边权为 w w w 的边。
输出格式
对于每组数据,输出一行一个字符串,若所求负环存在,则输出 YES
,否则输出 NO
。
输入样例
2
3 4
1 2 2
1 3 4
2 3 1
3 1 -3
3 3
1 2 3
2 3 4
3 1 -8
输出样例
NO
YES
说明/提示
数据规模与约定
对于全部的测试点,保证:
- 1 ≤ n ≤ 2 × 1 0 3 1 \leq n \leq 2 \times 10^3 1≤n≤2×103, 1 ≤ m ≤ 3 × 1 0 3 1 \leq m \leq 3 \times 10^3 1≤m≤3×103。
- 1 ≤ u , v ≤ n 1 \leq u, v \leq n 1≤u,v≤n, − 1 0 4 ≤ w ≤ 1 0 4 -10^4 \leq w \leq 10^4 −104≤w≤104。
- 1 ≤ T ≤ 10 1 \leq T \leq 10 1≤T≤10。
提示
请注意, m m m 不是图的边数。
题目分析:
题目要求我们判断是否存在从起点 1 出发的负权环,满足可用于负环检测的单源最短路径Bellman-Ford算法。
注意事项:
- 多组数据 :每组需清空
edge
,重置dist
; - 双向边构造:仅在 w ≥ 0 w \geq 0 w≥0 时添加反向边;
- 判负环:在第 n n n 轮继续松弛成功时说明存在负环;
- 可达限制 : 判断时需
dist[u] < INF
;
具体实现:
#include <iostream>
#include <algorithm>
using namespace std;
const int INF = 1e9;
struct Edge {
int u, v, w;
}edges[10005];//尽量开大
int dist[2005]; //2 * 1e3
int T, n, m, cnt; //cnt存放边数
bool bellman_ford(int start) {
fill(dist + 1, dist + n + 1, INF);
dist[start] = 0;
for (int i = 1; i <= n; i++) {
bool updated = false;
for (int j = 0; j < cnt; j++) {
int u = edges[j].u, v = edges[j].v, w = edges[j].w;
if (dist[u] < INF && dist[v] > dist[u] + w) {
dist[v] = dist[u] + w;
updated = true;
if (i == n) return true;
}
}
if (!updated) break;
}
return false;
}
void add_edge(int u, int v, int w) { //建边
edges[cnt].u = u;
edges[cnt].v = v;
edges[cnt++].w = w;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> T;
while (T--) {
for (int i = 0; i < cnt; i++) {
edges[i].u = edges[i].v = edges[i].w = 0; //置空并重置边数
}
cnt = 0;
cin >> n >> m;
for (int i = 0; i < m; i++) {
int u, v, w;
cin >> u >> v >> w;
add_edge(u, v, w);
if (w >= 0) add_edge(v, u, w);//权值为正是双向边
}
cout << (bellman_ford(1) ? "YES\n" : "NO\n");
}
return 0;
}