【图论基础】Bellman-Ford 算法:负权图的最短路径利器

在这里插入图片描述


1. 算法原理

Bellman-Ford 算法是用于单源最短路径的一种经典算法,不同于Dijkstra,该算法适用于边权可能为负的图。

核心思想:不断”松弛“

松弛(Relaxation):不断尝试通过一条边更新路径长度,若能更优则更新。
负环:若第 n n n 次依旧能够进行松弛,说明存在负权环(负环)。

原理解释

松弛操作就像是将一条连接两端点的”紧绷“的尺子,通过不断插入新的尺子使得尺子间形成的”路线“越来越”松“。在存在 n n n 个结点的图中,最多可形成包含 n − 1 n -1 n1 条边的一条路径(如果没有环)。
负环检测机制的原理在于,当我们第 n n n 次尝试松弛时,此时若还能够松弛,意味着存在环并且为负权环使得能够通过继续且不断地”加边“来缩短路径距离。

为什么Dijkstra无法处理负权图?
Dijkstra 是基于贪心策略的算法,一旦访问某点就不再更新,也就是说若后续出现能够使路径再度缩短的负权边时,不会”回头“更新。

与Dijkstra对比

特性DijkstraBellman-Ford
处理负权边不可处理可处理
复杂度 O ( m log ⁡ n ) O(m\log n) O(mlogn) (堆优化) O ( n m ) O(nm) O(nm)
思想贪心 + 堆动态规划式松弛
数据结构优先队列简单数组遍历

适用范围

特性Bellman-Ford
有向图 / 无向图Yes
含负权边Yes
检测负环Yes
稀疏图Yes
稠密图不推荐(效率不高)

2. 算法流程演示

为了更直观地看到最短路是如何被松弛出的,这里用一个小小的有向图来演示算法是如何工作的。
在这里插入图片描述

步骤松弛边距离变化 (A,B,C,D)说明
初始-[0, ∞, ∞, ∞]起点 A 初始化为 0
第1轮A→B[0, 4, ∞, ∞]B 从 ∞ 更新为 0+4=4
A→C[0, 4, 5, ∞]C 从 ∞ 更新为 0+5=5
B→C[0, 4, 2, ∞]B(4)+(-2)=2 < 5,更新 C
C→D[0, 4, 2, 5]C(2)+3=5,更新 D
D→B[0, 1, 2, 5]D(5)+(-4)=1 < B(4),更新 B
第2轮B→C[0, 1, -1, 5]B(1)+(-2)=-1 < C(2),更新 C
C→D[0, 1, -1, 2]C(-1)+3=2 < D(5),更新 D
D→B[0, -2, -1, 2]D(2)+(-4)=-2 < B(1),更新 B
第3轮B→C[0, -2, -4, 2]B(-2)+(-2)=-4 < C(-1),更新 C
C→D[0, -2, -4, -1]C(-4)+3=-1 < D(2),更新 D
D→B[0, -5, -4, -1]D(-1)+(-4)=-5 < B(-2),更新 B
检测环B→C-5+(-2) = -7 < C(-4)检测到负权环

3. 算法模板

实现步骤

  1. 初始化:设源点距离为0,其他点为无穷大
  2. 重复 n − 1 n-1 n1 次松弛操作
  3. n n n 次检查是否还能松弛(负环检测)
const int INF = 1e9;
int n, m;
int dist[N];

struct Edge {
	int u, v, w;
}edges[N];

bool bellman_ford(int s) {
    for (int i = 1; i <= n; ++i) dist[i] = INF;
    dist[s] = 0;
    for (int i = 1; i <= n; ++i) {
        bool updated = false;
        for (int j = 0; j < m; ++j) {
            int u = edges[j].u, v = edges[j].v, w = edges[j].w;
            if (dist[u] < INF && dist[v] > dist[u] + w) {
                dist[v] = dist[u] + w;
                updated = true;
                if (i == n) return true; //若第 n 次依旧松弛,存在负环
            }
        }
        if (!updated) break;//不能松弛,提前结束
    }
    return false;
}

存在两层循环,外层循环 n n n 次,内层循环 m m m 次,且所用空间取决于结点数和边数。
时间复杂度 O ( n m ) O(nm) O(nm)
空间复杂度 O ( n + m ) O(n + m) O(n+m)

⚠️注意:确定图中无负环时才能提前终止循环,否则可能会导致无法判出负环。

3. 实际例题

洛谷 P3385 【模板】负环

题目描述

给定一个 n n n 个点的有向图,请求出图中是否存在从顶点 1 1 1 出发能到达的负环。

负环的定义是:一条边权之和为负数的回路。

输入格式

本题单测试点有多组测试数据

输入的第一行是一个整数 T T T,表示测试数据的组数。对于每组数据的格式如下:

第一行有两个整数,分别表示图的点数 n n n 和接下来给出边信息的条数 m m m

接下来 m m m 行,每行三个整数 u , v , w u, v, w u,v,w

  • w ≥ 0 w \geq 0 w0,则表示存在一条从 u u u v v v 边权为 w w w 的边,还存在一条从 v v v u u u 边权为 w w w 的边。
  • w < 0 w < 0 w<0,则只表示存在一条从 u u u v v v 边权为 w w w 的边。

输出格式

对于每组数据,输出一行一个字符串,若所求负环存在,则输出 YES,否则输出 NO

输入样例

2
3 4
1 2 2
1 3 4
2 3 1
3 1 -3
3 3
1 2 3
2 3 4
3 1 -8

输出样例

NO
YES

说明/提示

数据规模与约定

对于全部的测试点,保证:

  • 1 ≤ n ≤ 2 × 1 0 3 1 \leq n \leq 2 \times 10^3 1n2×103 1 ≤ m ≤ 3 × 1 0 3 1 \leq m \leq 3 \times 10^3 1m3×103
  • 1 ≤ u , v ≤ n 1 \leq u, v \leq n 1u,vn − 1 0 4 ≤ w ≤ 1 0 4 -10^4 \leq w \leq 10^4 104w104
  • 1 ≤ T ≤ 10 1 \leq T \leq 10 1T10

提示

请注意, m m m 不是图的边数。

题目分析:

题目要求我们判断是否存在从起点 1 出发的负权环,满足可用于负环检测的单源最短路径Bellman-Ford算法。

注意事项:

  1. 多组数据 :每组需清空edge,重置 dist
  2. 双向边构造:仅在 w ≥ 0 w \geq 0 w0 时添加反向边;
  3. 判负环:在第 n n n 轮继续松弛成功时说明存在负环;
  4. 可达限制 : 判断时需 dist[u] < INF

具体实现:

#include <iostream>
#include <algorithm>
using namespace std;

const int INF = 1e9;
struct Edge {
    int u, v, w;
}edges[10005];//尽量开大
int dist[2005];  //2 * 1e3
int T, n, m, cnt;   //cnt存放边数

bool bellman_ford(int start) {
    fill(dist + 1, dist + n + 1, INF);
    dist[start] = 0;

    for (int i = 1; i <= n; i++) {
        bool updated = false;

        for (int j = 0; j < cnt; j++) {
            int u = edges[j].u, v = edges[j].v, w = edges[j].w;
            if (dist[u] < INF && dist[v] > dist[u] + w) {
                dist[v] = dist[u] + w;
                updated = true;
                if (i == n) return true;
            }
        }

        if (!updated) break;
    }
    return false;
}

void add_edge(int u, int v, int w) {    //建边
    edges[cnt].u = u;
    edges[cnt].v = v;
    edges[cnt++].w = w;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    cin >> T;
    while (T--) {
        for (int i = 0; i < cnt; i++) {
            edges[i].u = edges[i].v = edges[i].w = 0;   //置空并重置边数
        }
        cnt = 0;

        cin >> n >> m;

        for (int i = 0; i < m; i++) {
            int u, v, w;
            cin >> u >> v >> w;
            add_edge(u, v, w);
            if (w >= 0) add_edge(v, u, w);//权值为正是双向边
        }

        cout << (bellman_ford(1) ? "YES\n" : "NO\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值