牛顿法(Newton method)和拟牛顿法(quasi-Newton method)也是求解无约束最优化的常用方法,有收敛速度快的优点。牛顿法是迭代算法,每一步需要求解目标函数的黑塞矩阵的逆矩阵,计算比较复杂。拟牛顿法通过正定矩阵近似黑塞矩阵的逆矩阵或黑塞矩阵,简化了这一计算过程。
-
牛顿法
考虑无约束最优化问题
minx∈Rnf(x)(B.1) \min_{x\in R^n}f(x)\tag{B.1} x∈Rnminf(x)(B.1)
其中x∗x^*x∗为目标函数的极小值。
假设f(x)具有二阶连续偏导数,若第k次迭代值为x(k)x^{(k)}x(k),则可将f(x)在x(k)x^{(k)}x(k)附近进行二阶泰勒展开:
f(x)=f(x(k))+gkT(x−x(k))+12(x−x(k))TH(x(k))(x−x(k))(B.2)
f(x)=f(x^{(k)})+g^T_k(x-x^{(k)})+\frac{1}{2}(x-x^{(k)})^TH(x^{(k)})(x-x^{(k)}) \tag{B.2}
f(x)=f(x(k))+gkT(x−x(k))+21(x−x(k))TH(x(k))(x−x(k))(B.2)
这里,gk=g(x(k))=∇f(x(k))g_k=g(x^{(k)})=\nabla f(x^{(k)})gk=g(x(k))=∇f(x(k))是f(x)的梯度向量在点x(k)x^{(k)}x(k)的值,H(x(k))H(x^{(k)})H(x(k))是f(x)的黑塞矩阵(Hessian matrix)
H(x)=[∂2f∂xi∂xj]n×n(B.3)
H(x)=[\frac{\partial^2f}{\partial x_i\partial x_j}]_{n\times n} \tag{B.3}
H(x)=[∂xi∂xj∂2f]n×n(B.3)
在点(x(k)(x^{(k)}(x(k)的值,函数f(x)有极值的必要条件是在极值点初一阶导数为0,即梯度向量为0。特别是当H((x(k))H((x^{(k)})H((x(k))是正定矩阵时,函数f(x)的极值为极小值。
牛顿法利用极小值点的必要条件
∇f(x)=0(B.4)
\nabla f(x)=0 \tag{B.4}
∇f(x)=0(B.4)
每次迭代中从点(x(k))(x^{(k)})(x(k))开始,求目标函数的极小点,作为第k+1次迭代值x(k+1)x^{(k+1)}x(k+1)。具体地,假设x(k+1)x^{(k+1)}x(k+1)满足
∇f(x(k+1))=0(B.5)
\nabla f(x^{(k+1)})=0 \tag{B.5}
∇f(x(k+1))=0(B.5)
由式(B.2),对∇f(x)\nabla f(x)∇f(x)在x(k)x^{(k)}x(k)处进行一阶泰勒展开。
∇f(x)=gk+Hk(x−x(k))(B.6)
\nabla f(x)=g_k+H_k(x-x^{(k)})\tag{B.6}
∇f(x)=gk+Hk(x−x(k))(B.6)
其中Hk=H(x(k))H_k=H(x^{(k)})Hk=H(x(k))。这样,式(B.5)成为
gk+Hk(x(k+1)−x(k))=0(B.7)
g_k+H_k(x^{(k+1)}-x^{(k)})=0 \tag{B.7}
gk+Hk(x(k+1)−x(k))=0(B.7)
因此,
x(k+1)=x(k)−Hk−1gk(B.8)
x^{(k+1)}=x^{(k)}-H_k^{-1}g_k \tag{B.8}
x(k+1)=x(k)−Hk−1gk(B.8)
或者
x(k+1)=x(k)+pk(B.9)
x^{(k+1)}=x^{(k)}+p_k\tag{B.9}
x(k+1)=x(k)+pk(B.9)
其中,
Hkpk=−gk
H_kp_k=-g_k
Hkpk=−gk
用式(B.8)作为迭代公式的算法就是牛顿法。
算法B.1(牛顿法)
输入:目标函数f(x),梯度g(x)=∇f(x)\nabla f(x)∇f(x),黑塞矩阵H(x),精度要求ϵ\epsilonϵ;
输出:f(x)的极小值x∗x^*x∗。
(1)取初始点x(0)x^(0)x(0),置k=0。
(2)计算gk=g(x(k))g_k=g(x^{(k)})gk=g(x(k))。
(3)若∣∣gk∣∣<ϵ||g_k||<\epsilon∣∣gk∣∣<ϵ,则停止计算,得近似解x∗=x(k)x^*=x^{(k)}x∗=x(k)。
(4)计算Hk=H(x(k))H_k=H(x^{(k)})Hk=H(x(k)),并求pkp_kpk
Hkpk=−gk H_kp_k=-g_k Hkpk=−gk
(5)置x(k+1)=x(k)+pkx^{(k+1)}=x^{(k)}+p_kx(k+1)=x(k)+pk。(6)置k=k+1,转(2)。
步骤(4)求pk,pk=−Hk(−1)gkp_k,p_k=-H_k^{(-1)}g_kpk,pk=−Hk(−1)gk,要求Hk(−1)H_k^{(-1)}Hk(−1),计算比较复杂,所以有其他改进得方法。。
-
拟牛顿法得思路
在牛顿法的迭代中,需要计算黑塞矩阵的逆矩阵H(−1)H^{(-1)}H(−1),这一计算比较复杂,考虑用一个n阶矩阵Gk=G(xk)G_k=G(x^{k})Gk=G(xk)来近似代替Hk−1=H−1(x(k))H^{-1}_k=H^{-1}(x^{(k)})Hk−1=H−1(x(k))。这就是拟牛顿法的基本想法。
先看牛顿法迭代中黑塞矩阵HkH_kHk满足的条件。首先,HkH_kHk满足以下关系。在式(B.6)中取x=x(k+1)x=x^{(k+1)}x=x(k+1),即得
g(k+1)−gk=Hk(x(k+1)−x(k))(B.11) g_{(k+1)}-g_k=H_k(x^{(k+1)}-x^{(k)})\tag{B.11} g(k+1)−gk=Hk(x(k+1)−x(k))(B.11)
记yk=gk+1−gk,δk=x(k+1)−x(k),y_k=g_{k+1}-g_k,\delta_k=x^{(k+1)}-x^{(k)},yk=gk+1−gk,δk=x(k+1)−x(k),则
yk=Hkδk(B.12) y_k=H_k\delta_k\tag{B.12} yk=Hkδk(B.12)
或
Hk−1yk=δk(B.13) H_k^{-1}y_k=\delta_k \tag{B.13} Hk−1yk=δk(B.13)
式(B.12)或式(B.13)称为拟牛顿条件。 如果HkH_kHk是正定的(Hk−1H^{-1}_kHk−1也是正定的),那么可以保证牛顿法搜索方向pkp_kpk是下降方向。这是因为搜索方向是pk=−Hk−1gkp_k=-H^{-1}_kg_kpk=−Hk−1gk,由式(B.8)有
x=x(k)+λpk=x(k)−λHk−1gk(B.14) x=x^{(k)}+\lambda p_k=x^{(k)}-\lambda H^{-1}_kg_k\tag{B.14} x=x(k)+λpk=x(k)−λHk−1gk(B.14)
所以f(x)在x(k)x^{(k)}x(k)的泰勒展开式(B.2)可以去掉2阶项可以近似写成:
f(x)=f(x(k)−λgkTHk−1gk(B.15) f(x)=f(x^{(k)}-\lambda g_k^TH^{-1}_kg_k\tag{B.15} f(x)=f(x(k)−λgkTHk−1gk(B.15)
因为Hk−1H^{-1}_kHk−1正定,故有gkTHk−1gk>0g_k^TH^{-1}_kg_k>0gkTHk−1gk>0。当λ\lambdaλ为一个充分小的正数时,总有f(x)<f(x(k)),f(x)<f(x^{(k)}),f(x)<f(x(k)),也就是说pkp_kpk是下降方向。
Gk+1yk=δk(B.16) G_{k+1}y_k=\delta_k \tag{B.16} Gk+1yk=δk(B.16)
拟牛顿法将GkG_kGk作为Hk−1H_k^{-1}Hk−1的近似或选择BkB_kBk作为HkH_kHk的近似的算法称为拟牛顿法。 按照拟牛顿法条件,在每次迭代中可以选择更新矩阵Gk+1G_{k+1}Gk+1;
Gk+1=Gk+△Gk(B.17) G_{k+1}=G_k+\triangle G_k \tag{B.17} Gk+1=Gk+△Gk(B.17)
这种选择有一定的灵活性,因此有多种具体实现方法。下面介绍Broyden类拟牛顿法。-
DFP(Davidon-Flecher-Powell)算法
DFP算法选择Gk+1G_{k+1}Gk+1的方法是,假设每一步迭代中矩阵Gk+1G_{k+1}Gk+1是由GkG_kGk加上两个附加项构成的,即
Gk+1=Gk+Pk+Qk(B.18) G_{k+1}=G_k+P_k+Q_k\tag{B.18} Gk+1=Gk+Pk+Qk(B.18)
其中Pk,QkP_k,Q_kPk,Qk是待定矩阵,这时。
Gk+1yk=Gkyk+Pkyk+Qkyk(B.19) G_{k+1}y_k=G_ky_k+P_ky_k+Q_ky_k \tag{B.19} Gk+1yk=Gkyk+Pkyk+Qkyk(B.19)
为使Gk+1G_{k+1}Gk+1满足拟牛顿条件,可以PkP_kPk和QkQ_kQk满足:
Pkyk=δk(B.20) P_ky_k=\delta_k \tag{B.20}\\ Pkyk=δk(B.20)Qkyk=−Gkyk(B.21) Q_ky_k=-G_ky_k \tag{B.21} Qkyk=−Gkyk(B.21)
事实上,不难找出这样的PkP_kPk和QkQ_kQk,例如取
Pk=δkδkTδkTyk(B.22) P_k=\frac{\delta_k\delta_k^T}{\delta_k^Ty_k}\tag{B.22} Pk=δkTykδkδkT(B.22)Qk=−GkykykTGkykTGkyk(B.23) Q_k=-\frac{G_ky_ky_k^TG_k}{y^T_kG_ky_k}\tag{B.23} Qk=−ykTGkykGkykykTGk(B.23)
这样就可得到矩阵Gk+1G_{k+1}Gk+1的迭代公式:
Gk+1=Gk+δkδkTδkTyk−GkykykTGkykTGkyk(B.24) G_{k+1}=G_k+\frac{\delta_k\delta_k^T}{\delta_k^Ty_k}-\frac{G_ky_ky_k^TG_k}{y^T_kG_ky_k}\tag{B.24} Gk+1=Gk+δkTykδkδkT−ykTGkykGkykykTGk(B.24)
称为DFP算法:可以证明,如果初始矩阵G0G_0G0是正定的,则迭代过程中的每个矩阵GkG_kGk都是正定的。
DFP算法如下:
算法B.2(DFP算法)
输入:目标函数f(x),梯度g(x)=∇f(x)\nabla f(x)∇f(x),精度要求ϵ\epsilonϵ;
输出:f(x)的极小点x∗x^*x∗。
(1)选定初始点x(0)x^{(0)}x(0),取G0G_0G0为正定对称矩阵,置k=0。
(2)计算gk=g(x(k))g_k=g(x^{(k)})gk=g(x(k))。若∣∣gk∣∣<ϵ||g_k||<\epsilon∣∣gk∣∣<ϵ,则停止计算,得近似解x∗=xkx^*=x^{k}x∗=xk;否则转(3)。
(3)置pk=−Gkgkp_k=-G_kg_kpk=−Gkgk。
(4)一维搜索:求λk\lambda_kλk使得
f(x(k)+λkpk)=minλ≥0f(x(k)+λpk) f(x^{(k)}+\lambda_kp_k)=\min_{\lambda\geq0}f(x^{(k)}+\lambda p_k) f(x(k)+λkpk)=λ≥0minf(x(k)+λpk)
(5)置x(k+1)=x(k)+λkpkx^{(k+1)}=x^{(k)}+\lambda_kp_kx(k+1)=x(k)+λkpk。(6)计算gk+1=g(x(k+1))g_{k+1}=g(x^{(k+1)})gk+1=g(x(k+1)),若∣∣gk+1∣∣<ϵ||g_{k+1}||<\epsilon∣∣gk+1∣∣<ϵ,则停止计算,得近似解x∗=x(k+1);x^*=x^{(k+1)};x∗=x(k+1);否则,按式(B.24)算出Gk+1G_{k+1}Gk+1。
(7)置k=k+1,转(3)。
-
-
BFGS(Broyden-Fletcher-Goldfarb-Shanno)算法(BFGS algorithm)
BFGS算法是最流行得拟牛顿算法。
可以考虑用GkG_kGk逼近黑塞矩阵得逆矩阵H−1H^{-1}H−1,也可以考虑用BkB_kBk逼近黑塞矩阵H。这时,相应得拟牛顿条件是
Bk+1δk=yk(B.25) B_{k+1}\delta_k=y_k\tag{B.25} Bk+1δk=yk(B.25)
可以用同样的方法得到另一迭代公式。首先令
Bk+1=Bk+Pk+QK(B.26) B_{k+1}=B_k+P_k+Q_K\tag{B.26} Bk+1=Bk+Pk+QK(B.26)Bk+1δk=Bkδk+Pkδk+Qkδk(B.27) B_{k+1}\delta_k=B_k\delta_k+P_k\delta_k+Q_k\delta_k \tag{B.27} Bk+1δk=Bkδk+Pkδk+Qkδk(B.27)
考虑使PkP_kPk和QkQ_kQk满足:
Pkδk=yk(B.28) P_k\delta_k=y_k \tag{B.28} Pkδk=yk(B.28)Qkδk=−Bkδk(B.29) Q_k\delta_k=-B_k\delta_k\tag{B.29} Qkδk=−Bkδk(B.29)
找出适合条件的PkP_kPk和QkQ_kQk,得到BFGS算法矩阵Bk+1B_{k+1}Bk+1的迭代公式:
Bk+1=Bk+ykykTykTδk−BkδkδkTBkδkTBkδk(B.30) B_{k+1}=B_k+\frac{y_ky_k^T}{y^T_k\delta_k}-\frac{B_k\delta_k\delta_k^TB_k}{\delta_k^TB_k\delta_k}\tag{B.30} Bk+1=Bk+ykTδkykykT−δkTBkδkBkδkδkTBk(B.30)
可以证明,如果初始矩阵B0B_0B0是正定的,则迭代过程中的每个矩阵BkB_kBk都是正定的。下面写出BFGS拟牛顿法。算法B.3(BFGS算法)
输入:目标函数f(x),g(x)=∇f(x)\nabla f(x)∇f(x),精度要求ϵ\epsilonϵ;
输出:f(x)的极小点x∗x^*x∗。
(1)选定初始点x(0)x^{(0)}x(0),取G0G_0G0为正定对称矩阵,置k=0。
(2)计算gk=g(x(k))g_k=g(x^{(k)})gk=g(x(k))。若∣∣gk∣∣<ϵ||g_k||<\epsilon∣∣gk∣∣<ϵ,则停止计算,得近似解x∗=xkx^*=x^{k}x∗=xk;否则转(3)。
(3)置Bkpk=−gkB_kp_k=-g_kBkpk=−gk,求出pkp_kpk。
(4)一维搜索:求λk\lambda_kλk使得
f(x(k)+λkpk)=minλ≥0f(x(k)+λpk) f(x^{(k)}+\lambda_kp_k)=\min_{\lambda\geq0}f(x^{(k)}+\lambda p_k) f(x(k)+λkpk)=λ≥0minf(x(k)+λpk)
(5)置x(k+1)=x(k)+λkpkx^{(k+1)}=x^{(k)}+\lambda_kp_kx(k+1)=x(k)+λkpk。(6)计算gk+1=g(x(k+1))g_{k+1}=g(x^{(k+1)})gk+1=g(x(k+1)),若∣∣gk+1∣∣<ϵ||g_{k+1}||<\epsilon∣∣gk+1∣∣<ϵ,则停止计算,得近似解x∗=x(k+1);x^*=x^{(k+1)};x∗=x(k+1);否则,按式(B.30)算出Bk+1B_{k+1}Bk+1。
(7)置k=k+1,转(3)。
-
Broyden类算法(Broyden’s algorithm)
我们可以从BFGS算法矩阵BkB_kBk的迭代公式(B.30)得到BFGS算法关于GkG_kGk的迭代公式。事实上,若记Gk=Bk(−1),Gk+1=Bk+1(−1)G_k=B_k^{(-1)},G_{k+1}=B^{(-1)}_{k+1}Gk=Bk(−1),Gk+1=Bk+1(−1),那么对式(B.30)两次应用Sherman-Morrison公式①即得
Gk+1=(I−δkykTδkTyk)Gk(I−δkykTδkTyk)T+δkδkTδkTyk(B.31) G_{k+1}=(I-\frac{\delta_ky_k^T}{\delta_k^Ty_k})G_k(I-\frac{\delta_ky_k^T}{\delta_k^Ty_k})^T+\frac{\delta_k\delta_k^T}{\delta_k^Ty_k}\tag{B.31} Gk+1=(I−δkTykδkykT)Gk(I−δkTykδkykT)T+δkTykδkδkT(B.31)
称为BFGS算法关于GkG_kGk的迭代公式。 由DFP算法GkG_kGk的迭代公式(B.23)得到的Gk+1G_{k+1}Gk+1记作GDFPG^{DFP}GDFP,由BFGS算法GkG_kGk的迭代公式(B.31)得到的Gk+1G_{k+1}Gk+1记作GBFGSG^{BFGS}GBFGS,它们都满足方程拟牛顿条件式,所以它们的线性组合
Gk+1=αGDFP+(1−α)GBFGS(B.32) G_{k+1}=\alpha G^{DFP}+(1-\alpha)G^{BFGS}\tag{B.32} Gk+1=αGDFP+(1−α)GBFGS(B.32)
也满足拟牛顿条件式,而且是正定的。其中0≤α≤10\le\alpha\le10≤α≤1。这样就得到了一类拟牛顿法,称为Broyden类算法。
[1] 李航. 统计学习方法-2版.北京:清华大学出版社,2019