题目链接:Marks Distribution UVA - 10910
题目大意:n个科目,及格分数为p,一个人总分为t。求该人所有课程及格时各门课得分可能有多少种情况。
可以将该问题看作是有n个不同的盒子,允许盒子为空,且每个盒子至少有p个球,则先在每个盒子中放入p个球,剩下t-n*p个球,将剩下的球再放入这n个不同的盒子,有多少种不同的方法?
设tem=t-n*p,则将tem个小球分成n组需要n-1块隔板,因为允许盒子为空,不符合隔板法的原理,因此通过再添加n个小球,就可以保证每个盒子都至少分到一个小球,这样也符合了隔板法的要求(分完后,每组中各去掉一个小球,即满足了题设的要求)。然后就变成待分小球总数为tem+n个,球中间有tem+n-1个空档,需要在这些空挡中添加n-1个隔板来分隔为n份。因此共有C【tem+n-1】【n-1】种不同的方法。
#include <iostream>
#include <cstdio>
using namespace std;
const int N=150;
int c[N][N];
int main()
{
for(int i=0;i<N;i++)
c[i][0]=c[i][i]=1;
for(int i=1;i<N;i++)
for(int j=1;j<i;j++)
c[i][j]=c[i-1][j]+c[i-1][j-1];
int k,n,p,t;
scanf("%d",&k);
while(k--)
{
scanf("%d%d%d",&n,&t,&p);
int tem=t-p*n;
printf("%d\n",c[tem+n-1][n-1]);
}
return 0;
}