CNN+Transformer+Mamba,多热点联合=不撞车+高分保证√

在深度学习领域,架构的创新与融合始终是推动技术发展的关键动力。近年来,将 CNN 的局部感知能力、Transformer 的全局视野以及 Mamba 的高效建模特性相结合的混合架构,成为了学术界和工业界共同关注的热门研究方向。这种融合不仅为学术论文的发表提供了新的思路,更在模型效率与性能的双重突破上展现出巨大潜力,在工业界也有着广阔的应用前景,例如腾讯混元 T1 便是这一方向的成功实践。

目前,该领域尚处于蓬勃发展期,对于希望发表论文的研究人员来说,从动态计算路径、跨模态交互、硬件优化等角度切入,并紧密结合具体场景需求,将是极具价值的研究方向。接下来,我们深入剖析 9 篇结合 CNN、Transformer 和 Mamba 的前沿论文,探索它们的创新之处与应用成果。​

Weak-Mamba-UNet:革新医学图像分割​

在医学图像分割领域,数据标注往往面临成本高、耗时长的难题,弱监督学习成为了重要的研究方向。论文《Weak-Mamba-UNet: Visual Mamba Makes CNN and ViT Work Better for Scribble-based Medical Image Segmentation》提出了一种名为 Weak-Mamba-UNet 的弱监督学习框架,专门针对医学图像分割中的涂鸦标注任务。​

该框架巧妙地融合了 CNN、Transformer 和 Mamba 三种架构的优势。CNN 擅长提取图像的局部细节特征,Transformer 能够捕捉图像的全局语义信息,而 Mamba 则凭借其高效的长序列建模能力,为模型带来了更强大的表达能力。在具体实现上,Weak-Mamba-UNet 采用了多视角交叉监督学习策略,通过生成伪标签,实现了不同网络之间的协作优化。在 MRI 心脏分割数据集的实验中,该方法展现出了优异的性能,与传统方法相比,分割精度得到了显著提升,有效解决了涂鸦标注数据有限的问题,为医学图像分割领域开辟了新的道路。​

这篇论文的创新点极具开创性。

  • 它首次将基于 Mamba 的分割网络应用于涂鸦标注的医学图像分割任务,为该领域引入了全新的技术思路。
  • 同时,提出的多视角交叉监督框架,整合了 CNN、ViT 和 Mamba 三种架构,通过伪标签实现了有限监督下的协同学习,极大地提高了模型的泛化能力。
  • 实验结果充分证明,Mamba 架构能够显著提升 CNN 和 ViT 在弱监督任务中的性能,为后续相关研究提供了重要的参考依据。​

TransMamba:单图像去雨的新突破​

在图像处理领域,单图像去雨是一项具有挑战性的任务,需要模型能够准确识别并去除雨滴,同时保留图像的细节和结构。论文《A Hybrid Transformer-Mamba Network for Single Image Deraining》提出了一种名为 TransMamba 的混合网络,为单图像去雨问题提供了新的解决方案。​

TransMamba 充分发挥了 CNN、Transformer 和 Mamba 各自的优势。CNN 负责提取图像的局部特征,捕捉雨滴和背景的细节信息;Transformer 则用于捕捉全局依赖关系,理解图像的整体结构和语义;Mamba 的引入进一步增强了序列一致性,使得模型在处理图像序列时更加高效。此外,该网络还引入了频域增强模块和频域自注意力机制,通过在频域上对雨滴和背景特征进行分离,有效提升了去雨效果。同时,提出的频域相干性损失函数,能够重建图像的信号级线性关系,确保去雨后图像的自然性和一致性。​

在实验中,TransMamba 在多个公开数据集上进行了测试,结果表明,该方法能够有效去除雨滴,恢复出清晰、自然的图像,在去雨效果和图像质量上均优于现有的许多方法。

其创新点在于提出了一种双分支混合网络,巧妙地结合了 Transformer 和 Mamba,分别用于捕捉全局依赖和增强序列一致性。频域增强模块和频域自注意力机制的引入,以及频域相干性损失函数的设计,都为单图像去雨任务提供了全新的技术思路和方法。​

DualMamba:高光谱图像分类的轻量级解决方案​

高光谱图像包含了丰富的光谱和空间信息,在环境监测、农业、地质勘探等领域有着广泛的应用,但高光谱图像分类面临着数据维度高、计算复杂度大等挑战。论文《DualMamba: A Lightweight Spectral-Spatial Mamba-Convolution Network for Hyperspectral Image Classification》提出了一种轻量级双流网络 DualMamba,为高光谱图像分类问题提供了高效的解决方案。​

DualMamba 结合了 CNN 的局部特征提取能力和 Mamba 的全局建模能力,并采用了轻量级设计。CNN 能够提取图像的局部光谱和空间特征,Mamba 则可以捕捉全局上下文信息,两者通过动态位置嵌入和交叉注意力机制进行融合,实现了高效的全局 - 局部特征建模。此外,该网络还设计了自适应全局 - 局部融合模块,能够根据不同的图像特征动态调整全局和局部特征的权重,进一步优化特征表示,提高分类性能。​

在多个高光谱图像数据集上的实验结果表明,DualMamba 在保证分类准确性的同时,大幅降低了计算复杂度,具有较高的效率和实用性。

  • 其创新点在于提出了一种轻量级双流网络,有效结合了 CNN 和 Mamba 的优势,实现了高效的全局 - 局部特征建模。
  • 动态位置嵌入和交叉注意力机制的引入,增强了光谱 - 空间特征的融合效果,使得模型能够更好地捕捉复杂关系。
  • 自适应全局 - 局部融合模块的设计,为高光谱图像分类提供了一种灵活、高效的特征融合方法。​

MxT:图像修复的高效方案​

图像修复旨在恢复图像中缺失或损坏的部分,是计算机视觉领域的重要研究方向。论文《MxT: Mamba x Transformer for Image Inpainting》提出了一种名为 M×T 的图像修复方法,结合了 CNN 的局部特征提取能力、Transformer 的全局交互能力和 Mamba 的高效长序列处理能力,为图像修复任务带来了新的突破。​

M×T 通过混合模块实现了像素级和块级的双重交互学习。CNN 提取图像的局部细节特征,Transformer 负责全局的语义交互,而 Mamba 凭借其线性复杂度的优势,能够高效处理长序列,弥补了 Transformer 在像素级交互上的不足,同时保持了全局感知能力。在 CelebA-HQ 和 Places2 等数据集上的实验结果表明,M×T 不仅在修复质量上表现优异,能够生成逼真、自然的修复结果,还能高效处理高分辨率图像,具有良好的适应性和扩展性。​

  • 该方法的创新点在于提出了 M×T 模型,巧妙地结合了 Mamba 和 Transformer,通过混合模块实现了像素级和块级的交互学习,显著提升了修复质量。
  • 利用 Mamba 的线性复杂度处理长序列,有效解决了 Transformer 在像素级交互上的局限性,为图像修复任务提供了一种高效、实用的解决方案。​

以上这些论文从不同的应用场景出发,充分展示了 CNN、Transformer 和 Mamba 混合架构在深度学习领域的巨大潜力和创新价值。它们不仅为相关领域的研究提供了新的思路和方法,也为模型的进一步优化和应用奠定了坚实的基础。

如果你对这些论文感兴趣,想要获取全部论文和开源代码,移步主页简介处关注并回复:977C,一起探索深度学习领域的无限可能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值