这一篇我们来看树状数组的加强版线段树,树状数组能玩的线段树一样可以玩,而且能玩的更好,他们在区间求和,最大,平均
等经典的RMQ问题上有着对数时间的优越表现。
一:线段树
线段树又称"区间树”,在每个节点上保存一个区间,当然区间的划分采用折半的思想,叶子节点只保存一个值,也叫单元节点,所
以最终的构造就是一个平衡的二叉树,拥有CURD的O(lgN)的时间。
从图中我们可以清楚的看到[0-10]被划分成线段的在树中的分布情况,针对区间[0-N],最多有2N个节点,由于是平衡二叉树的形
式也可以像堆那样用数组来玩,不过更加耗费空间,为最多4N个节点,在针对RMQ的问题上,我们常常在每个节点上增加一些sum,
max,min等变量来记录求得的累加值,当然你可以理解成动态规划的思想,由于拥有logN的时间,所以在RMQ问题上比数组更加优美。
二:代码
1:在节点中定义一些附加值,方便我们处理RMQ问题。
1 #region 线段树的节点 2 /// <summary> 3 /// 线段树的节点 4 /// </summary> 5 public class Node 6 { 7 /// <summary> 8 /// 区间左端点 9 /// </summary> 10 public int left; 11 12 /// <summary> 13 /// 区间右端点 14 /// </summary> 15 public int right; 16 17 /// <summary> 18 /// 左孩子 19 /// </summary> 20 public Node leftchild; 21 22 /// <summary> 23 /// 右孩子 24 /// </summary> 25 public Node rightchild; 26 27 /// <summary> 28 /// 节点的sum值 29 /// </summary> 30 public int Sum; 31 32 /// <summary> 33 /// 节点的Min值 34 /// </summary> 35 public int Min; 36 37 /// <summary> 38 /// 节点的Max值 39 /// </summary> 40 public int Max; 41 } 42 #endregion
2:构建(Build)
前面我也说了,构建有两种方法,数组的形式或者链的形式,各有特点,我就采用后者,时间为O(N)。
1 #region 根据数组构建“线段树" 2 /// <summary> 3 /// 根据数组构建“线段树" 4 /// </summary> 5 /// <param name="length"></param> 6 public Node Build(int[] nums) 7 { 8 this.nums = nums; 9 10 return Build(nodeTree, 0, nums.Length - 1); 11 } 12 #endregion 13 14 #region 根据数组构建“线段树" 15 /// <summary> 16 /// 根据数组构建“线段树" 17 /// </summary> 18 /// <param name="left"></param> 19 /// <param name="right"></param> 20 public Node Build(Node node, int left, int right) 21 { 22 //说明已经到根了,当前当前节点的max,sum,min值(回溯时统计上一层节点区间的值) 23 if (left == right) 24 { 25 return new Node 26 { 27 left = left, 28 right = right, 29 Max = nums[left], 30 Min = nums[left], 31 Sum = nums[left] 32 }; 33 } 34 35 if (node == null) 36 node = new Node(); 37 38 node.left = left; 39 40 node.right = right; 41 42 node.leftchild = Build(node.leftchild, left, (left + right) / 2); 43 44 node.rightchild = Build(node.rightchild, (left + right) / 2 + 1, right); 45 46 //统计左右子树的值(min,max,sum) 47 node.Min = Math.Min(node.leftchild.Min, node.rightchild.Min); 48 node.Max = Math.Max(node.leftchild.Max, node.rightchild.Max); 49 node.Sum = node.leftchild.Sum + node.rightchild.Sum; 50 51 return node; 52 } 53 #endregion
3:区间查询
在线段树中,区间查询还是有点小麻烦的,存在三种情况。
① 完全包含:也就是节点的线段范围完全在查询区间的范围内,这说明我们要么到了“单元节点",要么到了一个子区间,这种情况
就是我找到了查询区间的某一个子区间,直接累积该区间值就可以了。
② 左交集: 这种情况我们需要到左子树去遍历。
③右交集: 这种情况我们需要到右子树去遍历。
比如说:我要查询Sum[4-8]的值,最终会成为:Sum总=Sum[4-4]+Sum[5-5]+Sum[6-8],时间为log(N)。
1 #region 区间查询 2 /// <summary> 3 /// 区间查询(分解) 4 /// </summary> 5 /// <returns></returns> 6 public int Query(int left, int right) 7 { 8 int sum = 0; 9 10 Query(nodeTree, left, right, ref sum); 11 12 return sum; 13 } 14 15 /// <summary> 16 /// 区间查询 17 /// </summary> 18 /// <param name="left">查询左边界</param> 19 /// <param name="right">查询右边界</param> 20 /// <param name="node">查询的节点</param> 21 /// <returns></returns> 22 public void Query(Node node, int left, int right, ref int sum) 23 { 24 //说明当前节点完全包含在查询范围内,两点:要么是单元节点,要么是子区间 25 if (left <= node.left && right >= node.right) 26 { 27 //获取当前节点的sum值 28 sum += node.Sum; 29 return; 30 } 31 else 32 { 33 //如果当前的left和right 和node的left和right无交集,此时可返回 34 if (node.left > right || node.right < left) 35 return; 36 37 //找到中间线 38 var middle = (node.left + node.right) / 2; 39 40 //左孩子有交集 41 if (left <= middle) 42 { 43 Query(node.leftchild, left, right, ref sum); 44 } 45 //右孩子有交集 46 if (right >= middle) 47 { 48 Query(node.rightchild, left, right, ref sum); 49 } 50 51 } 52 } 53 #endregion
4:更新操作
这个操作跟树状数组中的更新操作一样,当递归的找到待修改的节点后,改完其值然后在当前节点一路回溯,并且在回溯的过程中一
路修改父节点的附加值直到根节点,至此我们的操作就完成了,复杂度同样为logN。
1 #region 更新操作 2 /// <summary> 3 /// 更新操作 4 /// </summary> 5 /// <param name="index"></param> 6 /// <param name="key"></param> 7 public void Update(int index, int key) 8 { 9 Update(nodeTree, index, key); 10 } 11 12 /// <summary> 13 /// 更新操作 14 /// </summary> 15 /// <param name="index"></param> 16 /// <param name="key"></param> 17 public void Update(Node node, int index, int key) 18 { 19 if (node == null) 20 return; 21 22 //取中间值 23 var middle = (node.left + node.right) / 2; 24 25 //遍历左子树 26 if (index >= node.left && index <= middle) 27 Update(node.leftchild, index, key); 28 29 //遍历右子树 30 if (index <= node.right && index >= middle + 1) 31 Update(node.rightchild, index, key); 32 33 //在回溯的路上一路更改,复杂度为lgN 34 if (index >= node.left && index <= node.right) 35 { 36 //说明找到了节点 37 if (node.left == node.right) 38 { 39 nums[index] = key; 40 41 node.Sum = node.Max = node.Min = key; 42 } 43 else 44 { 45 //回溯时统计左右子树的值(min,max,sum) 46 node.Min = Math.Min(node.leftchild.Min, node.rightchild.Min); 47 node.Max = Math.Max(node.leftchild.Max, node.rightchild.Max); 48 node.Sum = node.leftchild.Sum + node.rightchild.Sum; 49 } 50 } 51 } 52 #endregion
最后我们做个例子,在2000000的数组空间中,寻找200-3000区间段的sum值,看看他的表现如何。