自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

迷茫与徘徊只会让你陷入绝境,欢迎私信博主,带你开始提升变现价值!

毕设指导、课程设计、代码辅导讲解、职业规划、商业合作等。 神奇的代码之旅-和你一同开启!希望技术的星星之火可以点燃我们对生活的激情向往!ヾ(◍°∇°◍)ノ゙

  • 博客(547)
  • 资源 (97)
  • 收藏
  • 关注

原创 【总目录】机器学习原理剖析、开源实战项目、全套学习指南(50篇合集)

相信不管此时的你是怀着好奇心打开这篇文章;还是偶然间刷到这篇博文;或者带有学习目的性走到这片领域,我都相信,面前的你一定会成功,因为你懂得投资和学习。学习是一个不断发展的过程,我们要用联系的眼光看待事物,也要用发展的眼光考虑未来,更要有适度的投资建设自己。不是每一次的遇见都是那么的巧合,也不是每一次的邂逅都会成就一段美好,所以你要相信,你和这篇文章的遇见也是更高层次的探索。机器学习算法知识、数据预处理、特征工程、模型评估——原理+案例+代码实战1、机器学习之Python开源教程——专栏介绍及理论知识概述。.

2022-08-24 00:01:39 4292 28

原创 【全网首发】言简意赅的Python全套语法,内附详细知识点和思维导图!【强烈建议收藏!】

Python是近几年比较火热的编程语言,至于有多火热?偶尔打开微信公众号,页面下面弹出的是《Python训练营》,打开朋友圈发现有推荐学习Python的课程,打开CSDN,发现热榜第一又是Python推荐文章,不得不说Python的影响力在目前还是比较大的,这和Python社区的宣传力度有着密切的关系!目前学习Python的人有多少呢?那些人在学习Python呢?至于这个问题,我认为没有一个准确的答案,因为每一天学习Python的人都在增加,学习Python被越来越多的人注重,所以要回答这个问题,最好的

2021-04-16 13:21:46 51570 1436

原创 上百种Python炫酷可视化案例珍藏版——看完掌握~一键三连~老板都想要给你升职加薪哟!

数据可视化是当下火热的大数据应用技术,很多新锐地大数据分析工具都注重开发数据可视化的功能模块。数据可视化及其技术研究和应用开发,已经从根本上改变了我们对数据和数据分析工具的理解,数据可视化对大数据发展的影响广泛而深入。数据可视化在近几年十分火热,但它到底是什么意思很多人却并不很清楚。从广义上来说,可视化无处不在, 打开浏览器, 网站就是个数据可视化, 背后是数据库密密麻麻的数据表, 到了你的浏览器就是浅显易懂的页面。帮助人更好的分析数据是数据可视化存在的意义,它对数据中所包含的意义进行分析,使分析结

2021-04-12 12:17:05 12246 74

原创 80行快乐代码与你窥探爬虫的数据深渊——教你如何高效快速任意爬虫(附大量项目案例和语法解析文章)

前端工程师把数据和网页完美的结合在一起,他们以为这样是最美丽的契合,殊不知,后端的那些工程师宝宝们,一天没事干,把他们的老窝给惊扰了,爬虫给网站带来的危害是比较大的,如果一个服务器一般被很多用户访问,可能它会宕机,也可能会崩溃,那么一个机器通过编程手段来达到这个目的,一分钟的点击次数,同时点击所达到的次数,机器不会累,于是网站被他们端了。一切都要恰到好处,于是他们商量好了,礼貌的访问,隐隐约约的访问,悄悄咪咪的访问,有节制的去获取数据,慢慢的前端工程师和后端工程师关系越来也好了,最终他们诞生了幸福的结晶..

2021-04-09 14:40:19 12566 58

原创 Python爬取热搜数据之炫酷可视化

可视化展示看完记得点个赞哟微博炫酷可视化音乐组合版来了!项目介绍背景现阶段、抖音、快手、哗哩哗哩、微信公众号已经成为不少年轻人必备的“生活神器”。在21世纪的今天,你又是如何获取外界的信息资源的?相信很多小伙伴应该属于下面这一种类型的:事情要想知道快,抖音平台马上拍;微博热搜刷一刷,聚焦热点不愁卖;闲来发呆怎么办, B 站抖音快手来;要是深夜无聊备,微信文章踩一踩;哈哈哈,小小的活跃一下气氛在这个万物互联的时代,已不再是那个“从前慢,车马慢....

2021-02-15 18:08:56 19206 76

原创 基于多种机器学习的西安市二手房价格分析及预测研究

本研究基于机器学习方法对西安市二手房价格进行预测分析,采用链家网数据构建全流程技术方案。通过requests+lxml实现数据采集,结合特征工程处理中文文本特征(如梯户比例解析、抵押信息分类等)。使用CatBoost、XGBoost等多模型对比,其中CatBoost表现最优(R²=0.86)。可视化分析显示区域、楼层、装修等因素对价格影响显著。项目创新性地实现了数据采集-治理-建模-可视化全链路,为房产评估提供量化依据,但存在高价值特征不足的局限。研究验证了机器学习在复杂房价预测中的有效性。

2025-09-01 15:15:29 1455

原创 基于Hadoop与层次聚类技术的电子游戏销售分析系统的设计与实现

本文介绍了一个基于大数据技术的电子游戏销售分析系统的设计与实现。该系统采用分布式架构,整合数据采集、存储、处理与可视化功能,为游戏企业提供市场趋势分析、用户行为洞察和销售预测支持。通过Hadoop、Spark等技术实现海量数据处理,结合ECharts实现交互式数据可视化。系统具有可扩展性和安全性,能有效辅助企业决策优化。研究成果不仅推动游戏产业数字化转型,也为大数据在文化产业中的应用提供了实践案例。未来可结合AI技术进一步提升系统智能化水平。

2025-09-01 14:29:21 1057

原创 基于大数据的大学生运动与健康关联性分析

本项目基于大数据分析大学生运动与健康关联性,通过整合多源校园健康数据,运用机器学习方法构建预测模型。研究重点在于解决数据稀疏性、模型泛化等难点,揭示运动类型与体质指标的关联规律,开发智能化健康预警工具。预期建立R²>0.75的预测模型,形成可视化分析报告和简易应用工具,为高校精准健康管理提供数据支持。项目突破传统抽样局限,推动"健康中国"战略在校园场景的落地实践。

2025-09-01 14:13:00 1038

原创 基于多种分词算法的词频统计的中文分词系统的设计与实现

本文介绍了一个基于Flask的中文分词与词频可视化系统,集成了jieba、pkuseg和THULAC三种分词引擎,支持自定义词典、停用词管理和多词组分词模式。系统采用三层架构设计(数据层-服务层-应用层),实现从文本预处理、分词统计到可视化展示的全流程处理。创新性地提供词云和柱状图双视图展示,支持细粒度词长筛选和结果导出功能。系统具有高扩展性,可应用于舆情分析、产品评价和学术研究等场景,通过工程化落地降低了中文文本处理的技术门槛。

2025-09-01 09:54:05 909

原创 基于YOLOV8的沙田柚检测种类好坏分拣识别系统的设计与实现

沙田柚作为中国国家地理标志产品,因果实饱满、口感独特而享誉中外,是当地乡村振兴战略下的重要支柱产业。近年来,随着种植面积和产量的不断增长,沙田柚的年产量已超过40万吨,产业总值超过40亿元。然而,沙田柚的分拣环节仍主要依赖人工方式,人工分拣效率低、成本高,且分拣标准易受人为主观因素影响,难以保证统一的质量标准。在果品规模化生产背景下,这些问题已经成为制约产业进一步发展的关键瓶颈。随着人工智能和计算机视觉技术的发展,基于深度学习的智能分拣逐渐成为农业现代化的重要方向。

2025-08-27 11:51:22 862

原创 基于YOLOV8的肺炎检测系统的设计与实现

本文介绍了基于YOLOv8深度学习模型的肺炎检测系统设计与实现。该系统通过数据预处理、模型训练优化和可视化界面开发,实现自动化肺炎病灶检测。项目特点包括前沿算法应用、完整数据处理流程、多场景适配性和友好人机交互界面。应用价值体现在临床辅助诊断、基层医疗支持、科研教学和远程医疗等方面。系统能有效提升肺炎诊断效率和准确性,未来可扩展至更多肺部疾病检测场景,为智能医疗发展提供技术支持。

2025-08-27 11:41:38 663

原创 基于YOLOV8的血细胞检测与计数系统的设计与实现

本文介绍了基于YOLOv8的血细胞检测与计数系统,该系统利用深度学习技术实现血细胞的自动识别与统计。项目采用数据预处理、模型训练优化、检测推理和可视化界面四个核心环节构建完整流程,支持图像、视频和实时摄像头输入。系统具有精度高、速度快、操作简便等特点,可应用于临床诊断、科研分析和教学培训等医疗场景,有效提升血细胞检测效率和准确性。通过PyQt5界面实现用户友好交互,为智能医疗检测提供技术支持。

2025-08-27 11:27:09 901

原创 基于YOLO的超市商品检测自动标价系统的设计与实现

本文介绍了基于YOLO算法的超市商品检测自动标价系统设计与实现。该系统利用YOLO模型实现商品实时检测,结合MySQL数据库完成自动标价,通过模块化设计提升了超市运营效率。实验表明,系统对200类商品的识别准确率达95%以上,检测速度40毫秒/张,显著优于传统条形码扫描方式。虽然存在对新商品识别延迟、复杂场景精度下降等不足,但该系统为零售智能化提供了可行方案。未来可通过算法升级、边缘计算等进一步提升性能。项目验证了深度学习在零售领域的应用价值,具有较强推广前景。

2025-08-27 11:11:17 936

原创 基于SpringBoot的智能美妆服饰教学APP及系统的设计与实现

本项目基于SpringBoot+Vue架构开发了一款智能化美妆教学APP,整合了美妆学习、社交互动和电商功能三大核心模块。系统采用前后端分离设计,包含用户学习专区、个性化推荐、社区交流和商城购物等功能,管理员端支持内容管理、用户审核及数据分析。通过MySQL数据库存储数据,结合协同过滤算法实现精准推荐。测试表明系统在功能、性能和安全性上均达标,为美妆行业数字化转型提供了创新解决方案。项目不仅实现了教学与消费的无缝衔接,更为未来扩展AR试妆等智能化功能奠定了基础。

2025-08-27 10:42:25 753

原创 基于Springboot的校园二手交易平台的设计与实现

本文介绍了一个基于Spring Boot的校园二手交易平台系统,旨在解决大学生二手交易需求与安全问题。系统采用B/S架构,整合Spring Boot、MyBatis、Vue.js等技术,实现商品发布、交易支付、信誉评价等核心功能,并创新性地融入校园自提模式与社交化设计。平台通过权限控制、数据加密保障安全性,测试表明系统性能稳定。项目为校园二手交易提供了规范化的解决方案,具有较高的实用价值和推广前景。

2025-08-27 10:29:04 923

原创 基于springboot的健身房推荐系统的设计与实现

本文介绍了一个基于Spring Boot和MySQL的健身管理系统,旨在解决传统健身房管理效率低下、信息化不足的问题。系统采用B/S架构,分为会员、教练和管理员三大模块,提供在线预约、会员卡管理、课程维护等功能。通过分层设计和RBAC权限控制,保障了系统的安全性和可扩展性。测试表明,系统能有效支持高并发访问,提升健身房的运营效率。该项目为健身行业数字化转型提供了实用参考,未来可扩展AI和物联网功能。

2025-08-27 10:11:46 928

原创 基于Spark的白酒行业数据分析与可视化系统的设计与实现

本项目基于Python+Selenium技术实现京东白酒商品数据采集,结合Spark进行数据清洗与分析,并通过Pyecharts构建多维度可视化系统。系统包含自动化爬虫、大数据处理和交互式可视化三大模块,支持消费者决策、企业市场分析和学术研究等应用场景。创新点包括全流程自动化、人性化爬虫设计、Spark分布式计算及丰富的可视化展示。未来可扩展至多品类电商数据,并引入机器学习预测模型,提升系统智能化水平。

2025-08-27 09:07:03 1682

原创 基于spark的招聘岗位需求分析可视化系统设计与实现

本项目基于Spark实现了一个招聘岗位需求分析系统,通过Selenium爬取智联招聘数据,利用Spark进行数据清洗和处理,并采用Pyecharts实现多维可视化分析。系统集成了XGBoost等机器学习模型进行薪资预测,通过Flask框架提供Web服务。主要功能包括:企业/地区/学历等多维度分析、19种交互式图表展示、在线薪资预测等。系统特色在于大数据处理能力、丰富的可视化效果和智能预测功能,为求职者和企业提供决策支持。项目采用分层架构,包含数据采集、清洗、分析、可视化、预测等完整流程,具有较高的实用价值。

2025-08-26 17:14:34 1130

原创 基于Spark的百万级电商用户行为分析与可视化系统的设计与实现

本项目基于Spark框架开发了一个电商用户行为分析与可视化系统,通过处理千万级用户行为数据,实现多维度的消费行为分析。系统采用Pyecharts生成19类可视化图表,包括用户活跃度趋势、商品热销榜等,并构建基于隐式反馈的推荐算法实现精准营销。结合Flask框架搭建前后端平台,为企业提供用户行为洞察和智能推荐功能,提升电商平台的运营效率与用户体验。项目创新性地融合了大数据处理、可视化分析和智能推荐技术,为电商数字化转型提供了实用解决方案。

2025-08-25 17:31:46 1557

原创 基于Django技术的Spark的化妆品消费行为分析系统的设计与实现

本项目基于Spark大数据处理与Django框架,构建化妆品行业消费行为分析系统。系统采用四层架构,整合MySQL与HDFS存储,实现用户管理、商品展示、公告管理等功能。核心亮点包括Spark+Django深度结合、双角色设计、丰富可视化(ECharts大屏展示消费趋势、热销排行等)。应用价值体现在帮助企业优化营销策略、提升用户购物体验,为行业数字化提供参考。未来可扩展实时数据处理、深度学习推荐等功能。系统展示了大数据技术在电商分析中的实践价值,具备良好迭代空间。

2025-08-25 17:14:30 700

原创 基于RFM模型的客户群体大数据分析及用户聚类系统的设计与实现

本项目基于RFM模型与聚类算法,开发了一个客户群大数据分析系统。系统采用Flask+Layui+MySQL技术栈,融合传统RFM规则打分与K-means/MiniBatchK-means聚类算法,实现客户价值多维评估。核心功能包括数据预处理、RFM建模、智能聚类分析和可视化展示,支持用户分层管理。通过标准化数据处理和最佳聚类数确定,系统能精准识别高价值客户群体,并利用Pyecharts生成交互式图表。相比传统方法,本系统提高了客户细分的客观性与精确性,为电商企业提供科学决策支持,具有较低实施成本和较强行业推

2025-08-25 16:47:36 1156

原创 基于Python的游戏推荐与可视化系统的设计与实现

本文介绍了一个基于Python的游戏推荐与可视化系统,旨在解决玩家在海量游戏中的选择困难问题,同时为开发者提供数据分析支持。系统采用前后端分离架构:后端使用Django框架处理数据和推荐算法(协同过滤+内容推荐),前端通过Vue.js实现交互界面。核心功能包括数据采集、用户管理、多维度推荐(关联/排行/偏好)、搜索展示、评论评分及可视化分析(ECharts)。项目亮点在于Python技术栈优势、多算法融合推荐和交互式可视化设计,为玩家提供个性化推荐,帮助开发者洞察市场趋势,具有较高的商业价值和行业参考意义。

2025-08-25 16:33:23 1008

原创 基于python的亚马逊最畅销小说数据分析与可视化系统【K-means聚类】

本项目构建了一个基于Python的亚马逊畅销小说数据分析系统,通过数据清洗、可视化分析和K-Means聚类算法,对2009-2019年的畅销书数据进行深入挖掘。系统采用B/S架构,包含数据管理、用户管理、可视化分析等模块,运用多种图表展示类别分布、评分趋势等数据特征。通过聚类分析将作者分为四类,为出版商、作者及销售平台提供市场洞察。系统具有交互性强、算法驱动等特点,未来可扩展情感分析等智能功能。

2025-08-15 10:43:41 1347

原创 基于python的睡眠健康分析系统设计与实现【K-means聚类、雷达图】

摘要: 本项目基于Python与Flask框架开发了一套睡眠健康分析系统,通过多维度数据采集(如睡眠时长、生活习惯等),结合K-means聚类和可视化技术(pyecharts/Matplotlib),实现睡眠模式的自动化分析与个性化展示。系统包含数据预处理、聚类分析、交互式图表(雷达图/热力图等)及用户管理功能,支持个人健康监测与科研医疗应用。其创新点在于全流程集成、多维度可视化及AI驱动的睡眠分群,为改善睡眠质量提供科学依据。技术栈涵盖Pandas、Scikit-learn和Flask,具备扩展性和实际应

2025-08-15 10:22:02 900

原创 基于Django的软件漏洞风险预警管理系统设计与实现

本文介绍了一个基于Python的软件漏洞风险预警管理系统,采用Django+Vue.js+MySQL技术栈实现B/S架构方案。系统分为用户端、管理员端和可视化大屏三大模块,集成ECharts实现漏洞数据可视化展示,支持CVSS标准风险评估和自动化预警机制。通过爬虫技术采集权威漏洞数据,结合Pandas等工具进行数据处理,具备完整的漏洞生命周期管理功能。系统具有高可扩展性、实时可视化、安全防护等特点,适用于企业、政府等机构的安全运维,也可作为网络安全教学实践平台。测试验证了系统在并发性能、操作稳定性等方面的表

2025-08-15 09:48:03 683

原创 基于Django的客户关系管理系统的设计与实现

本项目开发了一套基于Python、Django、Vue和MySQL的客户关系管理系统,旨在解决传统客户管理方式存在的信息分散、效率低下等问题。系统采用B/S架构,实现客户信息集中管理、业务流程标准化、销售数据分析等功能模块,支持多角色协同工作。通过前后端分离设计和严格的安全机制,系统具备良好的可扩展性和稳定性。测试表明系统在功能实现和性能表现上达到预期,未来可进一步整合智能分析技术。该系统为企业提供了高效的数字化客户管理解决方案,有助于提升客户满意度和市场竞争力。

2025-08-15 09:24:44 738

原创 基于高校出行推荐系统的设计与实现【Java版本、Python版本均有】

本文介绍了一个基于协同过滤算法的高校出行推荐系统。该系统针对高校场景优化,采用B/S架构,分为管理员端和学生端功能模块,通过分析用户历史出行数据实现个性化路线推荐。系统使用Python+Django开发,结合MySQL存储数据,采用用户协同过滤算法计算相似度生成推荐方案。特色包括面向高校场景的优化设计、个性化推荐功能和数据安全保护。未来可结合实时交通数据进一步提升推荐效果,为校园出行提供智能化解决方案。

2025-08-14 09:58:53 964

原创 基于Django的福建省旅游数据分析与可视化系统【城市可换】

本文介绍了一个基于Django框架的福建省旅游数据分析与可视化系统。系统通过Scrapy爬虫采集携程网景区数据,使用MySQL存储,并利用ECharts实现多维度可视化展示。主要功能包括数据采集、管理、分析和权限控制,提供评分分布、热度排行、评论分析等可视化图表。该系统为旅游管理部门、景区运营方和游客提供数据支持,具有一体化数据链路、灵活扩展性等特点,未来可扩展至多省份数据分析并引入AI功能。

2025-08-14 09:23:37 1421

原创 基于python的二手房市场数据分析预测系统的设计及实现

本项目是一个基于Python的二手房市场数据分析与预测系统,实现了从链家网数据采集、清洗、分析到价格预测的全流程。系统采用分层架构设计,包含爬虫模块(Requests+LXML)、数据预处理(Pandas)、可视化分析(Pyecharts)和预测模型(CatBoost/XGBoost),最终通过Flask框架开发Web应用。创新点包括自动化爬虫、复合特征工程和交互式可视化,预测模型R²达0.85+。系统可为购房者、中介和投资者提供价格评估、市场分析等服务,未来可扩展更多数据源和深度学习模型。(149字)

2025-08-14 09:02:44 1724

原创 基于Python的二手车价格影响因素研究【多种机器学习对比、线性回归、MLP、SVR、LightGBM】

本项目基于Python技术生态,通过爬取国内二手车平台29,901条交易数据,采用数据清洗、特征工程和多种机器学习模型(线性回归、MLP、SVR、LightGBM)构建二手车价格预测系统。研究发现LightGBM模型表现最佳(R²=0.95),关键影响因素为新车含税价、车型和品牌。研究为行业提供了智能化定价方案,未来可融合多源数据提升精度。项目代码和资源可私信获取。

2025-08-12 15:46:34 810

原创 基于Python的海量电商用户行为分析与可视化【推荐算法、统计模型、聚类模型、电商指标维度分析】

摘要 本项目基于阿里巴巴天池平台的百万级电商用户行为数据,利用Python数据分析与机器学习技术,构建了完整的用户行为分析框架。研究通过数据预处理、统计分析、运营指标评估(复购率、留存率、AARRR漏斗模型)揭示了用户活跃规律与转化瓶颈,并结合RFM模型与KMeans聚类实现用户价值分层。此外,基于LightFM模型开发了商品推荐系统,通过隐式反馈数据优化个性化推荐效果。研究成果为电商平台提供数据驱动的运营策略,助力提升用户留存、转化率与商业价值。未来可扩展多模态数据与深度学习技术,进一步优化分析精度与推荐

2025-08-12 15:01:59 1599

原创 基于Hadoop的全国农产品批发价格数据分析与可视化与价格预测研究

本文介绍了一个基于Hadoop生态体系的分布式农产品价格分析平台。项目通过爬虫采集10万条农产品数据,利用Flume和HDFS实现数据存储,使用Hive构建分层数据仓库。通过MapReduce进行数据清洗和预处理,并对比ARIMA与随机森林模型的价格预测效果,发现随机森林模型表现更优。平台采用Echarts和Jupyter Notebook实现可视化分析,揭示价格分布、季节波动等规律。研究表明,该平台能有效整合农产品价格数据,为农业决策提供技术支持,核心价值在于将分布式计算、机器学习和可视化技术有机结合,构

2025-08-12 14:40:46 698

原创 基于Hadoop的汽车价格预测分析及评论情感分析可视化系统

摘要: 本项目基于Hadoop技术构建二手车大数据分析系统,针对行业数据分散、估值偏差等痛点,实现多源数据采集、分布式存储、情感分析与可视化展示。系统整合交易数据与用户评论,通过HDFS存储、Hive数据仓库、MapReduce清洗及机器学习预测,完成品牌销量统计、价格分布分析及评论情感挖掘。采用ECharts+Flask实现交互式可视化,提供热力图、情感分布图等。创新点在于多源数据整合、情感决策支持及混合计算架构,为经销商与消费者提供精准分析工具,未来可拓展深度学习与区块链应用。

2025-08-12 14:28:25 1902

原创 基于Hadoop的农产品价格数据分析与可视化【Springboot】

本项目基于Hadoop生态系统构建农产品价格数据分析平台,通过多源数据采集、分布式存储和Spark分析,实现价格趋势预测与区域差异分析。系统采用六层架构,包含数据爬取、HDFS存储、Spark预处理、多维分析及ECharts可视化模块,支持农民种植决策、企业市场布局和政府政策制定。平台显著提升农业数据时效性,推动智慧农业发展,已通过热力图、趋势图等形式验证分析效果。完整代码与部署方案可联系作者获取。

2025-08-12 11:06:43 1183

原创 基于Hadoop的木鸟民宿数据分析与可视化、民宿价格预测模型系统的设计与实现

本项目基于Hadoop生态构建了木鸟民宿数据分析与可视化系统,实现了从数据采集到智能预测的全流程应用。系统采用Selenium爬取全国民宿数据,通过HDFS存储、Hive分析处理,运用CatBoost算法建立价格预测模型,并基于Flask开发了可视化Web平台。创新性地整合了大数据处理、机器学习与Web技术,为民宿市场提供多维数据支持和智能决策依据。项目成果包括稳定爬虫系统、完整数据处理链路、高精度预测模型和交互式可视化平台,展现了大数据与AI技术的深度融合应用价值。

2025-08-06 14:53:23 1913 1

原创 基于Hadoop的股票大数据分析可视化及多模型的股票预测研究与实现

在数字经济迅速发展的背景下,金融数据尤其是股票市场数据的规模呈指数级增长。如何从海量的股票交易数据中提取有价值的信息,并实现对未来价格的有效预测,成为当前金融技术研究和实际应用中的重要课题。传统的数据分析方法在处理TB级甚至PB级金融数据时效率低下,无法满足实时性、稳定性与可扩展性的需求。因此,构建一个基于大数据平台的股票数据分析与预测系统,不仅具备重大的学术研究意义,也能为证券公司、投资者和金融监管机构提供决策支持。

2025-08-06 11:47:21 1667

原创 基于Hadoop的电商大数据分析及LightFM的隐式推荐算法的设计与实现

本项目基于Hadoop生态构建了电商大数据分析与推荐系统,处理阿里天池平台的百万级用户行为数据。系统采用Flume+Sqoop+Hive+MySQL技术栈,实现从数据采集、预处理、分层存储到可视化展示的全流程处理。创新性地应用LightFM推荐算法,通过用户隐式行为(浏览/收藏等)构建个性化推荐模型,AUC达0.888。项目亮点包括四层数据仓库设计、实时数据传输与可视化分析,为电商平台提供用户行为洞察和精准推荐能力,有效提升运营效率与用户体验。系统完整实现了大数据处理闭环,具有较高的商业应用价值。

2025-08-06 11:30:17 1378

原创 基于Hadoop的成都市二手房数据分析与房价预测系统的设计与实现

本项目基于Hadoop平台构建了一套成都市二手房大数据分析与智能预测系统。通过Python爬虫采集链家网3万余条房源数据,采用Hadoop生态系统进行数据存储与处理,并利用CatBoost回归模型实现房价预测(R²达0.89)。系统采用B/S架构,整合数据采集、清洗、分析、预测和可视化功能,提供多维房价分析、智能估价、数据管理等服务。项目实现了从数据获取到应用落地的完整闭环,为购房决策、房产定价和政府调控提供数据支持,具有较高的实用价值和推广潜力。

2025-08-05 14:27:14 1861

原创 基于Django的豆瓣图书的热门小说推荐及管理系统的设计与实现【可换电影、美食、景区等对象】

本文介绍了一个基于Django的豆瓣图书热门小说推荐及管理系统。针对用户在海量小说资源中筛选困难的问题,系统采用协同过滤推荐算法,结合网络爬虫技术和数据可视化功能,为用户提供个性化阅读推荐。系统包含游客、注册用户和管理员三大模块,分别支持浏览、评分、评论和管理等功能。关键技术包括Django框架、MySQL数据库、改进的协同过滤算法和数据爬取预处理。测试表明系统具有较高的推荐准确率和良好的用户体验。项目创新点在于优化算法性能、模块化设计和数据可视化支持,未来可进一步引入深度学习算法和扩展数据采集范围。

2025-08-05 10:32:54 1814

原创 基于Django的计算机资源爬虫及可视化系统的设计与实现

本项目开发了一个基于Django的计算机资源爬虫及可视化系统,包含资源爬取、数据管理和可视化展示三大模块。系统采用Scrapy框架实现高效爬虫,结合Django ORM进行数据管理,并利用Echarts/D3.js实现交互式可视化。具备多源数据采集、智能分类检索、动态图表展示等功能,为技术学习、信息聚合和决策分析提供支持。系统特色在于灵活可扩展的爬虫架构、高效的后端管理和直观的数据可视化界面,适用于计算机教育、科研和技术趋势分析等领域。通过自动化采集和智能展示,显著提升了计算机资源获取与利用效率。

2025-08-05 10:19:49 1143

SEIR(SIR)新冠肺炎预测分析源码

博客案例:https://blog.csdn.net/weixin_47723732 截止 2021 年 4 月 27 日, 全球新增确诊病例连续 9 周增加,新增死亡病例连续 6 周增加。 世卫组织总干事谭德塞指出,虽然一些地区的新增确诊病例和死亡人数出现小幅下降,但许多国家疫情仍在密集传播,印度等国的情况尤其令人揪心。 中国政府已决定在全国进行全人群的新冠病毒疫苗接种,以建立最大规模的国民群体新冠免疫屏障。 请你们根据现有的知识和搜集相关数据,利用数学建模的方法,解决如下问题: 1. 建立传染病毒群体免疫屏障的数学模型,说明疫苗接种率的控制对构筑免疫屏障的作用。在此基础上考虑疫苗的有效性问题和病毒的变异问题对免疫屏障的可能影响。讨论免疫屏障和物理隔离对于整个社会的代价及收益的异同。 2. 以中国为例,考虑采取怎样的步骤、需要多大成本、多长时间可完成群体免疫屏障的建立。 3. 试分析导致印度新冠疫情急剧恶化的原因,给出印度疫情对周边国家疫情影响的预测分析和防控建议。 4. 根据你所建立的免疫屏障模型,提出能够有效遏制印度疫情蔓延的方案,并预测实施方案后印度疫情的走向 源码及分析

2022-04-05

基于Word2Vec向量化的新闻分本分类.ipynb

基于Word2Vec向量化的新闻分本分类.ipynb

2022-05-22

智能词云算法(一键化展示不同类型的词云图)运行生成HTML文件

点击运行提示用户输入文本路径:注意路径是txt文件的路径,所以如果是Word的,首先需要将其放在TXT文件中。 其次运行之后,会弹出一个功能选项卡,你可以根据选项来生成自己的词云,智能词云程序,小白也可以使用,不需要任何的编程基础!

2022-05-22

协同过滤推荐系统资源(基于用户-物品-Surprise)等案例操作代码及讲解

如果毕业设计做推荐系统可以参考这个资源!!!!!!!!! 资源包括: 1、包含基于物品,基于用户的协同过滤底层算法(Python实现) 2、基于python第三库Surprise实现的推荐系统(机器学习类似原理) 3、基于电影进行推荐系统的设计 4、包含大量的数据集(电影数据集)

2022-05-11

Python机器学习关联规则资源(apriori算法、fpgrowth算法)原理讲解

1、包含apriori算法的代码操作和讲解以及原理的文档PPT 2、包含fpgrowth算法的代码操作和讲解以及原理的文档PPT 3、关联规则的PPT 4、通过这些可以理解到关联规则的运用实际代码 5、值得推荐! 6、下载中之后有问题可以私信博主!!!(必回)

2022-05-11

旅游消费数据集——包含用户id,用户评分、产品类别、产品名称等指标,可以作为推荐系统的数据集案例

旅游消费数据集——包含用户id,用户评分、产品类别、产品名称等指标,可以作为推荐系统的数据集案例

2022-05-11

机器学习-推荐系统(基于物品).ipynb

基于用于的推荐系统代码,直接可以运行,只需要替换掉你的数据即可! 如果有需要做推荐系统案例的小伙伴,可以私信博主,留言即可! 第一步:发现用户的偏好 第二步:找到相似的用户或物品 第三步:计算推荐

2022-05-11

机器学习-推荐系统(基于用户).ipynb

机器学习-推荐系统(基于用户).ipynb

2022-05-11

pyecharts绘图案例模板大全(代码可作为模板)

1、包含53类图表项目,几百种pyecharts可视化模板 2、直接可以运行HTML即可展示画面,也可以直接在网页上修改数据 3、有问题可以私信博主 4、另外100种大屏可视化模板可以私信博主,前端展示,可以修改数据即可! 5、参考专栏:https://blog.csdn.net/weixin_47723732/category_10599682.html 让数据变得灵动炫酷起来,给数据赋予灵魂和价值,从可视化切入,介绍pyecharts、matplotlib、echarts、R语言绘图,Excel绘图等其他绘图,包含专业标准以及企业报表,让可视化不在单一乏味!

2022-05-09

基于hadoop对某网站日志分析部署实践课程设计报告参考模板.doc

基于Hadoop部署实践对网站日志分析 1. 项目概述 本次要实践的数据日志来源于国内某技术学习论坛,该论坛由某培训机构主办,汇聚了众多技术学习者,每天都有人发帖、回帖。至此,我们通过Python网络爬虫手段进行数据抓取,将我们网站数据(2013-05-30,2013-05-31)保存为两个日志文件,由于文件大小超出我们一般的分析工具处理的范围,故借助Hadoop来完成本次的实践。 2. 总体设计 2.1 Hadoop插件安装及部署 第一步:Hadoop环境部署和源数据准备 安装好VMware(查看) 第二步:使用python开发的mapper reducer进行数据处理。 第三步:创建hive数据库,将处理的数据导入hive数据库 第四步:将分析数据导入mysql 3. 详细实现步骤操作纪要 3.1 hadoop环境准备 首先开启Hadoop集群:start-all.sh:开启所有的Hadoop所有进程,在主节点上进行 NameNode它是Hadoop 中的主服务器,管理文件系统名称空间和对集群中存储的文件的访问。 Secondary NameNode.....

2022-05-09

hadoop实践项目-PPT演示步骤

实践的数据日志来源于国内某技术学习论坛,该论坛由某培训机构主办,汇聚了众多技术学习者,每天都有人发帖、回帖。至此,我们通过Python网络手段进行数据抓取,将我们网站数据(2013-05-30,2013-05-31)保存为两个日志文件,由于文件大小超出我们一般的分析工具处理的范围,故借助Hadoop来完成本次的实践。

2022-05-09

大数据分析-网站日志数据文件(Hadoop部署分析资料)

本次要实践的数据日志来源于国内某技术学习论坛,该论坛由某培训机构主办,汇聚了众多技术学习者,每天都有人发帖、回帖。至此,我们通过Python网络爬虫手段进行数据抓取,将我们网站数据(2013-05-30,2013-05-31)保存为两个日志文件,由于文件大小超出我们一般的分析工具处理的范围,故借助Hadoop来完成本次的实践。 使用python对原始数据进行清洗,以便后续进行统计分析; 使用Hive对清洗后的数据进行统计分析; 使用Sqoop把Hive产生的统计结果导出到mysql中; 两个日志文件,一共有200MB,符合大数据量级,可以作为推荐系统数据集和hadoop测试集。

2022-05-09

Hadoop网站日志分析源码(hive命令).txt

Hadoop网站日志分析源码(hive命令).txt

2022-05-09

Hadoop部署实践所需的安装包(Ubuntu下的安装包)

1、apache-hive-2.3.5-bin.tar.gz 2、hadoop-2.7.3.tar.gz 3、jdk-8u162-linux-x64.tar.gz 4、mysql-connector-java-5.1.24.tar.gz 5、sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz

2022-05-09

hive安装资料手册.rar

hive安装资料手册.rar

2022-05-09

hadoop实训课数据清洗py脚本(MapReduce python代码,可执行文件脚本,使用方法)

可以作为大数据预处理的MapReduce代码的参考!!! -执行脚本文件: cd /home/hadoop/logfiles/ source format_run_2013_o5_30.sh source format_run_2013_o5_31.sh 执行我们的脚本文件,可以用source或者./

2022-05-09

使用hadoop-streaming运行Python编写的MapReduce程序.rar

使用hadoop-streaming运行Python编写的MapReduce程序.rar

2022-05-09

Python原生词云(自定义各类参数)

运行根据提示输入文本路径和背景图路径。颜色,停用词,大小,词频等多个参数

2022-04-18

Python编写成绩计算系统

利用Python语言编写成绩管理系统,具体解释参考博主文章: https://blog.csdn.net/weixin_47723732/article/details/107946288

2022-04-07

数学建模论文万能模板(适用于大学生各类建模类竞赛论文参考)

格式排版已经完善,曾有小伙伴用此模板加上自己的建模功底,获得省部级一等奖数学建模! 改模板包含数学建模相关论文必要的流程和解题步骤,并且Word内有批注,对每一个板块应该如何书写,如何注意论文的一些格式,以及参考案例等! 以及按照标准论文排版OK了,建议写作的时候直接按照这个模板进行内容的填充,并且将相关术语进行整合! 例如: 简单的描述一下问题求解的大体思路,首段简明扼要,言简意赅。例如本文基于如何的问题背景,进行如何的建模,有怎样的经济实用效果,得出如何的策略等。主要是简短背景加实际效应的结合 针对问题一,此处描述对于问题一要求解进行大致的思路,利用了什么样的方法,有什么样的思路想法,最终通过怎么样的模型算法进行问题的建模,所得出的直接效果,例如一些模型的准确度和参数,可以加入说明。最终通过该求解方法,能够达到如何的效果,把问题求解实际化。这里该给出的加粗,需要加粗。 针对问题二,同样的效果描述和步骤,这里唯一需要注意的就是,如果问题是层层递进,就需要说明基于问题一所求解的结果,应用到问题二当中。 针对问题三,具体的过程如上,这里不光是对本问题的描述,可以适当.......

2022-04-07

YOLO格式肺炎数据图像(已标注)

YOLO格式肺炎数据图像(已标注) 内容: 肺炎医学影像(如X光) + YOLO格式标注文件。 标注信息: 病灶的边界框位置(x_center, y_center, width, height)和类别(肺炎)。 核心价值: 直接用于训练YOLO系列目标检测模型,实现肺炎病灶的自动识别。 用途: 医疗影像AI(尤其是肺炎辅助诊断)的模型开发与训练。 注意点: 数据来源和授权需确认。

2025-06-05

药品销售数据集.rar

药品销售数据集.rar

2025-03-05

美妆用户行为数据集脱敏

user_id item_id behavior_type item_category date hour user_geohash 用户ID;商品ID;用户行为标签(1:浏览,2:收藏,3:加购物车,4:购买);商品类别ID;日期;时间;用户所在省份 注:本数据集为2023年双十一、双十二期间的部分美妆店铺用户行为数据集,由于涉及到用户的个人信息及商品的名称,故对用户ID及商品信息做了脱敏处理。该数据集可以用于大数据分析研究及隐式推荐系统的实现,作为大数据的研究性的数据集。

2025-02-10

酒店客户流失预测模型的研究与应用数据集

本项目数据来源于携程用户一周的访问数据,为保护客户隐私,已经将数据经过了脱敏,和实际商品的订单量、浏览量、转化率等有一些差距,不影响问题的可解性

2024-11-27

Hadoop豆瓣电影数据分析(Hadoop)操作源码

Hadoop豆瓣电影数据分析(Hadoop)操作源码

2022-06-16

研究生数学建模华为杯C题第一问含结果csv表格.rar

交叉分发的目的:保证每个作品都被不同的评审专家评审,且这些评审专家之间有足够的交集,以确保评审的可比性。 评审负载均衡:每位评审专家都应有大致相同数量的作品进行评审。 交叉的最大化:确保每份作品都被不同的评审专家评审,并且尽可能多的作品之间有交集。 交叉的均匀分布:确保交集在所有评审专家之间均匀分布,以提高可比性。 问题一 在每个评审阶段,作品通常都是随机分发的,每份作品需要多位评委独立评审。为了增加不同评审专家所给成绩之间的可比性,不同专家评审的作品集合之间应有一些交集。但有的交集大了,则必然有交集小了,则可比性变弱。请针对3000支参赛队和125位评审专家,每份作品由5位专家评审的情况,建立数学模型确定最优的“交叉分发”方案,并讨论该方案的有关指标(自己定义)和实施细节。 结果: ,Reviewer_1,Reviewer_2,Reviewer_3,Reviewer_4,Reviewer_5 Work_1,5,18,24,32,99 Work_2,42,45,57,62,105 Work_3,6,67,74,87,96 Work_4,3,7,46,65,82 Work_5

2023-09-22

2023年华为杯题目.rar

2023年华为杯题目.rar

2023-09-22

【案例+操作+演示】20分钟带你入门Pandas,掌握数据分析科学模块,附带上百个案例练习题含答案

Pandas练习题目录 1.Getting and knowing - Chipotle - Occupation - World Food Facts 2.Filtering and Sorting - Chipotle - Euro12 - Fictional Army 3.Grouping - Alcohol Consumption - Occupation - Regiment 4.Apply - Students - Alcohol Consumption - US_Crime_Rates 5.Merge - Auto_MPG - Fictitious Names - House Market 6.Stats - US_Baby_Names - Wind_Stats 7.Visualization - Chipotle - Titanic Disaster - Scores - Online Retail - Tips 8.Creating Series an

2023-09-14

【多思路附源码】2023高教社杯 国赛数学建模C题思路 - 蔬菜类商品的自动定价与补货决策

【多思路附源码】2023高教社杯 国赛数学建模C题思路 - 蔬菜类商品的自动定价与补货决策

2023-09-08

豆瓣电影数据集【案例数据5000条】私信博主获取代码不限量获取数据

movie_id,movie_name,director,yanyuanData,juqing,country,language,push_time,movie_long,pingfen,pingjiarenshu,conver_img,describe 26671361,喜丧,张涛,"['郁凤云', '王士兰', '李宝明', '阮凤鸣']",剧情, 中国大陆 , 汉语普通话,2015-12-05(青年导演海上影展),108分钟,8.8,28475,https://img1.doubanio.com/view/photo/s_ratio_poster/public/p2361586020.jpg,鲁南张庄,86岁老人林郭氏,身体硬朗,在农村老宅独自生活。林郭氏突发脑血栓,身体状况逐渐恶化。子女积极为老人操作敬老院入住事宜。敬老院床位紧张,只有等待敬老院有老人去世,按照老人的意愿,开始了到子女家轮流居住的短暂旅程。这一过程中,林郭氏中风摔倒,脑神经损伤,得了笑病。敬老院终于有老人亡故,空出床位。却在去敬老院的前夕,林郭氏怀揣着全家福老照片溘然长逝。按照老风俗,儿孙们给她办了一场轰轰烈烈

2023-09-05

Prescan相关资料文档及安装教程和配套包

Prescan相关资料文档及安装教程和配套包

2023-05-14

全分布式集群Hadoop全套组件解压即可使用包含(Ubuntu-HDFS-HBASE-HIve-Sqoop-mysql....)

1.集群配置,包含三个结点,主节点控制所有的子节点 2.集群已经搭建好了,解压之后直接可以使用Finalshell和VMware连接 3.包含全套组件:hdfs,hbase,hive,sqoop,mysql,pig,spark等大数据组件 4.如果不知道如何使用,或者需要做Hadoop项目可以私信博主

2023-03-06

超方便深度学习Pytorch框架环境部署包

解压之后直接激活使用,不需要自己配置深度学习环境【超便捷】

2022-12-05

目标检测 智能交通 国内交通标志数据集 - 标注完成 - 1W张数据实拍交通标志

1.实拍交通标志已标注数据集1万张——内含txt版本。 2.本数据集含有45类标志,有关联ID。 3.数据集适合yolo系统算法使用,内部已经把txt信息都转换好了,看个人需求使用。 4.数据集多为实拍,精度够,并且本人亲自训练过后,检测精度可以达到98%(50轮)。 有需要指导可私信博主;包含深度学习框架和训练好的文件分享 采集的真实场景的数据,标注后可以用于交通标志物检测 手工标注范围良好,适合高精度目标识别 可以直接用于YOLO系列的交通灯目标检测检测;数据场景丰富

2022-12-05

机器学习配套资源.rar

机器学习配套资源.rar

2022-08-24

Hadoop电影数据集,包含字段说明

Hadoop电影数据集,包含字段说明

2022-06-17

基于Hadoop豆瓣电影数据分析实验报告

豆瓣用户每天都在对“看过”的电影进行“很差”到“力荐”的评价,豆瓣根据每部影片看过的人数以及该影片所得的评价等综合数据,通过算法分析产生豆瓣电影 Top 250。 为了分析电影产业的发展趋势,本次实验需要对这些信息做统计分析。 注意:豆瓣网站的数据形式为文本文件(必须将导入到hive中做处理)。也可以为CSV文件,例如下图: 针对本次实验,我们需要用到Hadoop集群作为模拟大数据的分析软件,集群环境必须要包括,hdfs,hbase,hive,flume,sqoop等插件,最后结合分析出来的数据进行可视化展示,需要用到Python(爬取数据集,可视化展示)或者echarts等可视化工具。

2022-06-16

Hadoop豆瓣电影分析可视化源码

针对本次实验,我们需要用到Hadoop集群作为模拟大数据的分析软件,集群环境必须要包括,hdfs,hbase,hive,flume,sqoop等插件,最后结合分析出来的数据进行可视化展示,需要用到Python(爬取数据集,可视化展示)或者echarts等可视化工具。 豆瓣用户每天都在对“看过”的电影进行“很差”到“力荐”的评价,豆瓣根据每部影片看过的人数以及该影片所得的评价等综合数据,通过算法分析产生豆瓣电影 Top 250。 为了分析电影产业的发展趋势,本次实验需要对这些信息做统计分析。 注意:豆瓣网站的数据形式为文本文件(必须将导入到hive中做处理)。也可以为CSV文件,例如下图:

2022-06-16

自然语言处理之文本分类及文本情感分析资源大全(含代码及其数据,可用于毕设参考!)

包含自然语言处理下的文本分词、构建词向量、以及文本分类;主题分类;情感分析模型代码,可以作为毕业设计参考代码,你可以阅读作者的代码案例,将其换成自己的数据进行构架,如此可以进一步的增强代码的逻辑性! 值得下载!整理和测试不易! 包含多种模型案例 文章专栏代表: 机器学习之自然语言处理——中文分词jieba库详解(代码+原理) https://blog.csdn.net/weixin_47723732/article/details/124907474?spm=1001.2014.3001.5501

2022-05-23

基于Word2Vec构建多种主题分类模型(贝叶斯、KNN、随机森林、决策树、支持向量机、SGD、逻辑回归、XGBoost...)

基于Word2Vec构建多种主题分类模型: 贝叶斯、KNN、随机森林、决策树、支持向量机、SGD、逻辑回归、XGBoost、lightgbm,通过网格搜索进行参数优化,最终迭代出每个模型的最佳参数和准确率,最终返回一个最佳模型。 利用测试数据进行测试,分类模型的效果如何! 1. 有监督学习:读取文本内容(->X)和文本分类标签(->y) 2. 文本内容 -> 分词 (用户字典,停用词) -> 空格连接的字符串 或者 词列表 3. 特征提取/向量化 -> X - 空格连接的字符串 -> CountVectorizer,TfidfVectorizer - 词列表 -> Word2Vec,Doc2Vec 4. 分类标签编码 -> LabelEncoder 5. 构建训练集测试集 6. 构建模型 7. 训练模型 8. 调参和评估 9. 模型的应用

2022-05-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除