无题1

闲来无事,在家补番。从前天开始,一共补了4部了。

碧蓝之海,非常好看的一部日常番,如果因为番名而以为它是一部纯恋爱番剧,那你可就大错特错了。我给它评分:9.8分。很羡慕男主的生活,身边的人都是自己所喜欢的,每天都有一帮前辈带你玩,也有好朋友在身边陪你疯,尽管有时不如意,但是如果有那样的朋友们,也不会感到寂寞。如果你想开怀大笑,不妨去看一看。

青春猪头少年不会梦到兔女郎学姐,真的,我不该在看完碧蓝之海之后看这部番,虽然结局很好,但是过程中非常压抑,看到中途会很难受,比较适合没经历过恋爱的中学生看。我给它评分:7.5分。虽然说人活着就是为了樱岛麻衣,但是我看这部番的时候不喜欢其中任何一个角色,或许这也是这部番的特别之处,人物性格刻画得很好,但是在他们的缺陷之处又刻画得非常深刻。我也算理解为什么那么多人对老虚又爱又恨,一部不停吊你胃口却又给你无限遐想的动漫,真的让人看的十分难受,就是不能满足观众的愿望。还是那句话,虽然结局很美好,但是很烧脑,很让人迷惑。遇事不决,量子力学。

笨蛋测试召唤兽,这部番真的就是给初高中生看的了,我现在看这部番,有一种莫名的后悔,如果早点看的话就好了。我给它评分:8分。一部综合了搞笑和恋爱的中学生活动漫,但是男主实在是太笨情商太低让人在观看过程中不由得把角色代入到现实生活中,以至于有些弹幕说出来十分幼稚。当然,只是因为男主的性格真的戳中某些人的内心,他们才会愤怒,才会激动。不过男主的生活也是十分让人羡慕的,虽然是公认的笨蛋,但是周围总是有一帮愿意陪他玩的朋友,有几个十分喜欢他的人,生活也不寂寞,可以说有一点点治愈吧。不过整部番你不只看男主的话,还是很不错的恋爱+搞笑,12年以前的老番,现在看还真的是考古了。可惜动漫周边销量很差,没有第三季的制作了。

虫笼的卡伽斯特尔,应该算新番,因为是前几天才完结。动漫风格我总觉得在哪里看到过,剧情也是总感觉在哪里看到过,如果以后能回想起来再来修改吧。我给它评分:8.5分。在一个人类变异成巨大飞虫四处杀人取食的世界,人类在仅存的几座城市下生活。故事讲的还算不错,人物性格刻画得也很棒,所以给8.5分。但是给我的美中不足的感受就是,故事推进的有点快,就前面还是好好的生活,突然就女主被抓走去当虫后,男主不得已必须去拯救。说实话,整个故事的主线剧情我感觉都是在最后4集里面讲完的,当然,前面的剧情还算可以,但是没有介绍女主的身世,以及为什么突然就能使用虫后的能力等等。看完整部番我人都是懵的,结局很美好,男女主在一起(虽然年龄差的有点多)。不过确实是一部好动漫了,画风也是类3D的,比较推荐吧。

这几天看了这几部番,我感觉我都要抑郁了2333。当然,补番是不会停止的,直到考研成绩出来的时候。毕竟,这些天或许是我最后十分悠闲的日子了。之后的生活会变得十分忙碌了吧。

送一句话给自己:早点找到女朋友吧!

变分模态分解(Variational Mode Decomposition, VMD)是一种强大的非线性、无参数信号处理技术,专门用于复杂非平稳信号的分析与分解。它由Eckart Dietz和Herbert Krim于2011年提出,主要针对传统傅立叶变换在处理非平稳信号时的不足。VMD的核心思想是将复杂信号分解为一系列模态函数(即固有模态函数,IMFs),每个IMF具有独特的频率成分和局部特性。这一过程与小波分析或经验模态分解(EMD)类似,但VMD通过变分优化框架显著提升了分解的稳定性和准确性。 在MATLAB环境中实现VMD,可以帮助我们更好地理解和应用这一技术。其核心算法主要包括以下步骤:首先进行初始化,设定模态数并为每个模态分配初始频率估计;接着采用交替最小二乘法,通过交替最小化残差平方和以及模态频率的离散时间傅立叶变换(DTFT)约束,更新每个模态函数和中心频率;最后通过迭代优化,在每次迭代中优化所有IMF的幅度和相位,直至满足停止条件(如达到预设迭代次数或残差平方和小于阈值)。 MATLAB中的VMD实现通常包括以下部分:数据预处理,如对原始信号进行归一化或去除直流偏置,以简化后续处理;定义VMD结构,设置模态数、迭代次数和约束参数等;VMD算法主体,包含初始化、交替最小二乘法和迭代优化过程;以及后处理,对分解结果进行评估和可视化,例如计算每个模态的频谱特性,绘制IMF的时频分布图。如果提供了一个包含VMD算法的压缩包文件,其中的“VMD”可能是MATLAB代码文件或完整的项目文件夹,可能包含主程序、函数库、示例数据和结果可视化脚本。通过运行这些代码,可以直观地看到VMD如何将复杂信号分解为独立模态,并理解每个模态的物理意义。 VMD在多个领域具有广泛的应用,包括信号处理(如声学、振动、生物医学信号分析)、图像处理(如图像去噪、特征提取)、金融时间序列分析(识
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,广泛应用于图像处理、计算机视觉和模式识别等领域。物体识别是OpenCV的一个重要应用场景,以下是一些常见的物体识别方法和技术: 1. **特征提取与匹配**: - **SIFT(尺度不变特征变换)**和**SURF(加速稳健特征)**:这些算法用于检测和描述局部特征,能够在图像中识别出相同的物体,即使它们的大小、旋转或光照条件发生变化。 - **ORB(定向快速旋转BRIEF)**:一种快速的特征检测和描述算法,适用于实时应用。 2. **模板匹配**: - 通过在图像中滑动一个模板(已知物体的图像),并计算模板与图像区域的相似度,来找到物体的位置。 3. **机器学习与深度学习**: - **支持向量机(SVM)**:用于分类和回归分析,可以用于物体识别任务。 - **卷积神经网络(CNN)**:深度学习模型,特别适合处理图像数据,能够自动学习图像的特征并进行分类。 4. **目标检测算法**: - **Haar级联分类器**:基于积分图和AdaBoost算法,用于实时人脸检测。 - **YOLO(You Only Look Once)**和**SSD(Single Shot MultiBox Detector)**:实时目标检测算法,能够在单次前向传播中同时进行目标定位和分类。 5. **实例分割**: - **Mask R-CNN**:在目标检测的基础上,进一步分割出目标的精确轮廓。 OpenCV提供了丰富的API和工具,可以方便地实现上述方法。以下是一个简单的示例代码,展示如何使用OpenCV进行模板匹配: ```python import cv2 import numpy as np # 读取原始图像和模板图像 original_image = cv2.imread('original_image.jpg') template = cv2.imread('template.jpg') template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY) w, h = template_gray.shape[::-1] # 转换为灰度图 gray_original = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) # 模板匹配 result = cv2.matchTemplate(gray_original, template_gray, cv2.TM_CCOEFF_NORMED) threshold = 0.8 loc = np.where(result >= threshold) # 绘制矩形框 for pt in zip(*loc[::-1]): cv2.rectangle(original_image, pt, (pt[0] + w, pt[1] + h), (0, 255, 255), 2) # 显示结果 cv2.imshow('Detected', original_image) cv2.waitKey(0) cv2.destroyAllWindows() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值