第三届蓝桥杯java本科组第6题


    南北朝时,我国数学家祖冲之首先把圆周率值计算到小数点后六位,比欧洲早了1100年!他采用的是称为“割圆法”的算法,实际上已经蕴含着现代微积分的思想。

    如图【1.jpg】所示,圆的内接正六边形周长与圆的周长近似。多边形的边越多,接近的越好!我们从正六边形开始割圆吧。

    如图【2.jpg】所示,从圆心做弦的垂线,可把6边形分割为12边形。该12边形的边长a'的计算方法很容易利用勾股定理给出。之后,再分割为正24边形,....如此循环会越来越接近圆周。

    之所以从正六边开始,是因为此时边长与半径相等,便于计算。取半径值为1,开始割圆吧!

    以下代码描述了割圆过程。
   
    程序先输出了标准圆周率值,紧接着输出了不断分割过程中多边形边数和所对应的圆周率逼近值。

public class B21
{
 public static void main(String[] args)
 {
  System.out.println("标准 " + Math.PI);
  
  double a = 1;
  int n = 6;
  
  for(int i=0; i<10; i++)
  {
   double b = Math.sqrt(1-(a/2)*(a/2));
   a = Math.sqrt((1-b)*(1-b) + (a/2)*(a/2));
   
   n = ______________; //填空
   
   System.out.println(n + "  " + _______________);  // 填空
  }
 }
}

 

请分析代码逻辑,并推测划线处的代码。

答案写在 “解答.txt” 文件中

注意:只写划线处应该填的内容,划线前后的内容不要抄写。


解答:

package com.test1;


public class Sixth
{
	public static void main(String[] args)
	{
		System.out.println("标准 " + Math.PI);
		
		double a = 1; 
		int n = 6;
		
		for(int i=0; i<10; i++)
		{
			double b = Math.sqrt(1-(a/2)*(a/2));
			a = Math.sqrt((1-b)*(1-b) + (a/2)*(a/2));
			
			n = 2*n; //填空 //多边形边数翻倍
			
			System.out.println(n + "  " +n*a/2);  // 填空  2*PI*r=n*a,r=1
		}
	}
}


 

输出:

标准 3.141592653589793
12  3.105828541230249
24  3.1326286132812378
48  3.1393502030468667
96  3.14103195089051
192  3.1414524722854624
384  3.141557607911858
768  3.1415838921483186
1536  3.1415904632280505
3072  3.1415921059992717
6144  3.1415925166921577

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值