判断最小生成树的唯一性(POJ 1679 The Unique MST)

本文探讨了如何判断最小生成树(MST)是否唯一的方法。通过分析MST不唯一的原因,给出了具体的判断流程,并提供了使用Kruskal算法实现的具体代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目传送门

我们都知道,最小生成树(MST)是不唯一的,那么怎么才能判断最小生成树是否唯一呢?
首先来分析一下MST不唯一的原因;
举个题目中的样例2:
4 4
1 2 2
2 3 2
3 4 2
4 1 2

假设以上的边的编号为1 2 3 4
构造MST的时候,可以选择边 1 2 3 ,也可以选择边 2 3 4 。
可以看出,在构造MST的时候,有可能可以选择不同的边,这样构造出来的最小生成树不相同,但最小生成树的权是唯一的。

如果无向网中存在相同权值的边,还要分成以下三种情形来考虑。以下讨论情形都是针对MST中包含了相同权值的边。

1.相同权值的边有公共顶点。
2.相同权值的边没有公共顶点。
3.混合情形。

判断MST是否唯一的思路

(1)对图中每条边,扫描其它边,如果存在相同权值的边,就对该边做标记。
(2)然后用Kruskal或者Prim求MST。
(3)求得MST之后,如果该MST中未包含作了标记的边,即可判定MST唯一;如果包含作了标记的边,则依次去掉这些边再求MST,
    如果求得的MST权值和原来的MST权值相同,即可判定MST不唯一。

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<iomanip>
#include<vector>
#include<queue>
#include<algorithm>
#define max(a,b)   (a>b?a:b)
#define min(a,b)   (a<b?a:b)
#define swap(a,b)  (a=a+b,b=a-b,a=a-b)
#define X (sqrt(5)+1)/2.0  //Wythoff
using namespace std;
typedef long long int LL;
const int MAXL(1e4);
const int MAX(0x3f3f3f3f);
const int mod(1e9+7);
int dir[4][2]= {{-1,0},{1,0},{0,1},{0,-1}};
int father[MAXL+50];
struct node
{
    int st;
    int ed;
    int power;
    bool used;//第一次求MST时,是否包含该边
    bool del;//判断边是否被删除
    bool flag;//是否存在其它边的权值与改变一样
} edge[MAXL+50];
int n,m;
int mark;//标记是否第一次执行Kruskal算法
void init()//初始化祖先数组
{
    for(int i=0; i<=MAXL; i++)
        father[i]=i;
}
bool cmp(struct node p,struct node q)
{
    return p.power<q.power;
}
int Find(int x)
{
    if(x!=father[x])
        father[x]=Find(father[x]);
    return father[x];
}
int Merge(int x,int y,int i)
{
    int sum=0;
    int fx=Find(x);
    int fy=Find(y);
    if(fx!=fy)
    {
        father[fx]=fy;
        sum+=edge[i].power;
        if(!mark)//第一次求MST时把边标记
            edge[i].used=1;
    }
    return sum;
}
int Kruskal()
{
    init();
    int sum=0;
    for(int i=1; i<=m; i++)
    {
        if(!edge[i].del)
            sum+=Merge(edge[i].st,edge[i].ed,i);
    }
    return sum;
}
int main()
{
    ios_base::sync_with_stdio(false);
    int T;
    cin>>T;
    while(T--)
    {
        cin>>n>>m;
        for(int i=1; i<=m; i++)
        {
            cin>>edge[i].st>>edge[i].ed>>edge[i].power;
            edge[i].used=edge[i].del=edge[i].flag=0;
        }
        sort(edge+1,edge+m+1,cmp);
        for(int i=1; i<=m; i++)//查找权值相同的边
            for(int j=1; j<=m; j++)
                if(i!=j&&edge[i].power==edge[j].power)
                    edge[i].flag=1;
        mark=0;
        int ans1=Kruskal(),ans2=0;
        int logo=0;
        mark=1;
        for(int i=1; i<=m; i++)
        {
            if(edge[i].used&&edge[i].flag)
            {
                edge[i].del=1;//将该边删除
                ans2=Kruskal();
                if(ans1==ans2)
                {
                    logo++;
                    break;
                }
                edge[i].del=0;//记得把标记再重新变为0
            }
        }
        if(!logo)
            cout<<ans1<<endl;
        else
            cout<<"Not Unique!"<<endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值