我们都知道,最小生成树(MST)是不唯一的,那么怎么才能判断最小生成树是否唯一呢?
首先来分析一下MST不唯一的原因;
举个题目中的样例2:
4 4
1 2 2
2 3 2
3 4 2
4 1 2
假设以上的边的编号为1 2 3 4
构造MST的时候,可以选择边 1 2 3 ,也可以选择边 2 3 4 。
可以看出,在构造MST的时候,有可能可以选择不同的边,这样构造出来的最小生成树不相同,但最小生成树的权是唯一的。
如果无向网中存在相同权值的边,还要分成以下三种情形来考虑。以下讨论情形都是针对MST中包含了相同权值的边。
1.相同权值的边有公共顶点。
2.相同权值的边没有公共顶点。
3.混合情形。
判断MST是否唯一的思路
(1)对图中每条边,扫描其它边,如果存在相同权值的边,就对该边做标记。
(2)然后用Kruskal或者Prim求MST。
(3)求得MST之后,如果该MST中未包含作了标记的边,即可判定MST唯一;如果包含作了标记的边,则依次去掉这些边再求MST,
如果求得的MST权值和原来的MST权值相同,即可判定MST不唯一。
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<iomanip>
#include<vector>
#include<queue>
#include<algorithm>
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
#define swap(a,b) (a=a+b,b=a-b,a=a-b)
#define X (sqrt(5)+1)/2.0 //Wythoff
using namespace std;
typedef long long int LL;
const int MAXL(1e4);
const int MAX(0x3f3f3f3f);
const int mod(1e9+7);
int dir[4][2]= {{-1,0},{1,0},{0,1},{0,-1}};
int father[MAXL+50];
struct node
{
int st;
int ed;
int power;
bool used;//第一次求MST时,是否包含该边
bool del;//判断边是否被删除
bool flag;//是否存在其它边的权值与改变一样
} edge[MAXL+50];
int n,m;
int mark;//标记是否第一次执行Kruskal算法
void init()//初始化祖先数组
{
for(int i=0; i<=MAXL; i++)
father[i]=i;
}
bool cmp(struct node p,struct node q)
{
return p.power<q.power;
}
int Find(int x)
{
if(x!=father[x])
father[x]=Find(father[x]);
return father[x];
}
int Merge(int x,int y,int i)
{
int sum=0;
int fx=Find(x);
int fy=Find(y);
if(fx!=fy)
{
father[fx]=fy;
sum+=edge[i].power;
if(!mark)//第一次求MST时把边标记
edge[i].used=1;
}
return sum;
}
int Kruskal()
{
init();
int sum=0;
for(int i=1; i<=m; i++)
{
if(!edge[i].del)
sum+=Merge(edge[i].st,edge[i].ed,i);
}
return sum;
}
int main()
{
ios_base::sync_with_stdio(false);
int T;
cin>>T;
while(T--)
{
cin>>n>>m;
for(int i=1; i<=m; i++)
{
cin>>edge[i].st>>edge[i].ed>>edge[i].power;
edge[i].used=edge[i].del=edge[i].flag=0;
}
sort(edge+1,edge+m+1,cmp);
for(int i=1; i<=m; i++)//查找权值相同的边
for(int j=1; j<=m; j++)
if(i!=j&&edge[i].power==edge[j].power)
edge[i].flag=1;
mark=0;
int ans1=Kruskal(),ans2=0;
int logo=0;
mark=1;
for(int i=1; i<=m; i++)
{
if(edge[i].used&&edge[i].flag)
{
edge[i].del=1;//将该边删除
ans2=Kruskal();
if(ans1==ans2)
{
logo++;
break;
}
edge[i].del=0;//记得把标记再重新变为0
}
}
if(!logo)
cout<<ans1<<endl;
else
cout<<"Not Unique!"<<endl;
}
}