常用算法模板——基础算法:排序、二分、高精度、前缀和与差分、位运算、双指针、离散化、区间合并
常用算法代码模板 (1) :基础算法
常用算法代码模板 (2) :数据结构
常用算法代码模板 (3) :搜索与图论
常用算法代码模板 (4) :数学知识
算法选择——由数据范围反推算法时间复杂度
文章目录
1 排序
std::sort(begin, end, cmp)
1.1 直接插入排序
int n;
int q[N]; // q[0 ... n-1]
void insert_sort() {
for (int i = 1; i < n; i++)
for (int j = i; j >= 1 && q[j] > q[j - 1]; j--)
swap(q[j], q[j - 1]);
}
1.2 快速排序
- 确定枢轴:通常从
q[l]
、q[l + r >> 1]
、q[r]
之中任选一个 - 划分子区间:双指针
i
、j
初始位于待排区间两侧外,先i
后j
相向而行,最终使得左右子区间q[l ... j]
、q[j+1 ... r]
左小右大 - 递归排序左右子区间(该写法左子区间右端点必须为
j
)
int q[N]; // q[l ... r]
void quick_sort(int l, int r) {
if (l >= r) return; // 只剩一个数或没有数了则不排序
int x = q[l + r >> 1]; // 枢轴(可选 q[l]、q[l + r >> 1]、q[r])
int i = l - 1, j = r + 1; // 双指针初始位于两侧外(追加1偏移量)
while (i < j) {
// 进行一轮划分操作
do i++; while (q[i] < x);
do j--; while (q[j] > x);
if (i < j) swap(q[i], q[j]);
}
quick_sort(l, j), quick_sort(j + 1, r); // 左子区间右端点必须为j
}
1.3 归并排序
- 确定分界点:
mid = l + r >> 1
- 递归排序左右子区间
- 归并左右子区间为有序子区间:挑出两者较小值,相等则优先归并
q[i]
,使得排序稳定
int q[N]; // q[l ... r]
int tmp[N]; // 辅助数组tmp临时存放新区间
void merge_sort(int l, int r) {
if (l >= r) return; // 只剩一个数或没有数了则不排序
int mid = l + r >> 1; // 确认分界点:左[l, mid]、右[mid + 1, r]
merge_sort(l, mid), merge_sort(mid + 1, r);
int k = 0, i = l, j = mid + 1;
while (i <= mid && j <= r) // 归并左右子区间为有序子区间:挑出两者较小值
if (q[i] <= q[j]) tmp[k++] = q[i++]; // 相等则优先归并q[i],否则排序不稳定
else tmp[k++] = q[j++];
while (i <= mid) tmp[k++] = q[i++]; // 并入区间剩余元素
while (j <= r) tmp[k++] = q[j++];
for (i = l, j = 0; i <= r; ++i, ++j) // 将tmp[0 ... r-l+1]复制给q[l ... r]
q[i] = tmp[j];
}
2 二分
2.1 整数二分
- 中点将区间划分出左右两子区间
- 判断中间点是否满足某侧区间的性质
check(mid)
,查找x边界,目标在x区间,检测x区间性质。易知该种写法条件检测始终为"≥"或"≤",对应下文check_ge()
(greater_equal)、check_le()
(less_equal),对比目标和中点的位置关系即可得出条件检测函数。 - 返回所检测的x区间的端点x
当查找右边界时中点应为
l + r + 1 >> 1
,简记:有(“右”) 加必有(“右”) 减
/* 查找左边界,即第一个满足条件的元素下标 (lower_bound) */
int bsearch_l(int l, int r) {
while (l < r) {
int mid = l + r >> 1;
if (check_ge(mid, target)) r = mid; // 目标在左,mid所指>=目标:带mid去左边[l, mid]
else l = mid + 1; // 否则去右边 [mid + 1, r]
}
return l;
}
/* 查找右边界,即最后一个满足条件的元素下标 (upper_bound的前驱) */
int bsearch_r(int l, int r) {
while (l < r) {
int mid = l + r + 1 >> 1; // 有(“右”)加必有(“右”)减
if (check_le(mid, target)) l = mid; // 目标在右,mid所指<=目标:带mid去右边[mid, r]
else r = mid - 1; // 否则去左边: [l, mid - 1]
}
return r;
}
2.2 浮点数二分
类似整数二分的查找左边界,常写作f(mid) >= target
的形式。解唯一,无需处理边界。要注意浮点精度问题。
int bsearch_f(double l, double r) {
const double eps = 1e-8; // 精度,视题目而定
while (r - l > eps) {
double mid = (l + r) / 2;
if (check_ge(mid, target)) r = mid; // 目标在左,mid所指>=目标。注意浮点关系运算精度问题
else l = mid; // 边界均无需+1或-1
}
return l;
}
3 高精度运算
使用变长数组vector<int>
存储大整数及其属性,低位存于低位。亦可自定义结构体实现。
3.1 高精度加法
/* C = A + B, A >= 0, B >= 0 */
vector<int> add(vector<int> &A, vector<int> &B) {
if (A.size() < B.size()) return add(B, A);
vector<int> C;
int t = 0; // 进位
for (int i = 0; i < A.size() i++) {
t += A[i];
if (i < B.size()) t += B[i];
C.push_back(t % 10);
t /= 10;
}
if (t) C.push_back(t); // 存入最后的进位
return C;
}
3.2 高精度减法
/* 比较两个高精度整数的大小,返回A - B的符号 */
int cmp(vector<int> &A, vector<int> &B) {
if (A.size() > B.size()) return 1; // 优先比较长度
else if (A.size() < B.size()) return -1;
for (int i = A.size() - 1; i >= 0; i--) // 从高位起逐位比较
if (A[i] > B[i]) return 1;
else if (A[i] < B[i]) return -1;
return 0;
}
/* C = A - B, A >= B, A >= 0, B >= 0 */
vector<int> sub(vector<int> &A, vector<int> &B) {
vector<int> C;
int t = 0; // 借位
for (int i = 0; i < A.size(); i++) {
t = A[i] - t; // 成为本轮的被减数
if (i < B.size()) t -= B[i]; // 先直接相减,t<0则说明需借位
C.push_back((t + 10) % 10); // 若t<0,则存的是借位后的差;否则正常存差
if (t < 0) t