kaggle竞赛1-3月热门赛题,有一起组队打比赛的嘛?

一、圣诞老人 2024 - 困惑排列拼图

组队截止时间:25年1月24日

公布成绩时间:25年1月31日

赛题背景:在这个充满节日气氛的时刻,Rudolph和他的朋友们为大家准备了一场别开生面的挑战——“Santa 2024 - The Perplexity Permutation Puzzle”。这个比赛的灵感来源于经典的圣诞故事,但故事中的文字却被调乱了,等待着聪明的参赛者们来重新排列。 参赛者的任务是将这些混乱的文字重新整理,使其恢复成流畅的故事。通过最小化“困惑度”(perplexity),你将帮助读者更轻松地理解这些故事。困惑度是衡量文本可读性的重要指标,越低的困惑度意味着故事越清晰易懂。

二、CZII - CryoET 物体识别

组队截止时间:25年1月29日

公布成绩时间:25年2月5日

赛题背景:在本次竞赛中,您将开发机器学习 (ML) 算法来注释 3D 细胞图像中的各种蛋白质复合物(具有明确结构的生物粒子),从而加速生物医学科学的发现并推进疾病治疗。

三、LLMs大语言模型评委系统漏洞筛查

组队截止时间:25年2月25日

公布成绩时间:25年3月4日

赛题背景:本次 Kaggle 比赛“LLMs- You Can't Please Them Al”探讨了在主观评估中,使用大型语言模型(LLMs)作为评委系统的脆弱性。参赛者需要设计能最大化多个 LLM 评分分歧的英语短文,帮助研究 LLM 在主观任务中的能力和局限性。

比赛主要是基于 LLMs 的评分一致性、对抗输入的鲁棒性及漏洞利用的研究。比赛的结果将促进理解如何改进此类系统的健壮性。

四、CIBMTR - 同种异体造血干细胞移植生存预测公平性竞赛

组队截止时间:25年2月26日

公布成绩时间:25年3月5日

赛题背景:在本次竞赛中,你将开发模型来改善异基因造血干细胞移植(HCT)患者的存活率预测。这是确保每位患者都有公平机会获得成功治疗的重要一步,无论其背景如何。

五、Konwinski Prize - 解决 GitHub 问题的 AI 挑战

组队截止时间:25年3月5日

公布成绩时间:25年6月11日

赛题背景:Konwinski Prize 是一场由 Andy Konwinski 主办的代码竞赛,目标是开发一个能够解决 90% 新 GitHub 问题的 AI 模型。竞赛依托 SWE-bench 基准测试,要求参赛者在 GitHub 提供的实际问题上设计高效的解决方案,最终获胜者将有机会赢取高达 100 万美元 的奖金。 该比赛旨在探索 AI 在软件开发领域中的应用,尤其是在优化代码修复、减少开发者调试时间等方面的潜力,助力开发者专注于更高价值的任务。

<think>嗯,用户想参与或了解大数据建模相关的比赛,特别是关于平台和参与方法。首先,我需要整理常见的比赛平台,比如Kaggle、阿里天池、DataFountain等,这些平台都是比较知名的,用户可能听说过。然后要说明参与步骤,比如注册、组队、下载数据、建模、提交结果等,这些步骤对新手来说可能比较重要。还要提到如何学习相关知识,比如在线课程、书籍和社区,这样用户如果有基础不足的问,也能找到学习资源。 接下来,用户提供的引用内容中有提到MathorCup竞赛,需要特别介绍一下这个比赛,包括时间和流程。还有引用3提到的资料,可以推荐用户去领取,帮助他们准备比赛。另外,需要注意用户可能对国内外的平台都有兴趣,所以既要包括国际的Kaggle,也要有国内的阿里天池和DataFountain。 用户的问可能还包括如何组队、需要哪些技能,所以在建议部分要提到团队合作和技术栈,比如编程语言和算法。同时,强调实践的重要性,鼓励用户多参加练习,积累经验。最后,确保回答结构清晰,分点列出,方便用户一步步跟进。还要检查是否有遗漏的信息,比如比赛的时间节点或者资源获取方式,确保引用正确,比如MathorCup的引用[^1]和资料引用[^3]。</think>### 大数据建模比赛参与指南 #### 一、主流比赛平台与参与方法 1. **Kaggle** - 国际最大数据科学竞赛平台,涵盖金融、医疗、图像等多个领域 - 参与流程:注册账号→加入比赛→下载数据集→提交预测结果 - 特点:提供公开排行榜和社区讨论区,适合新手学习 2. **阿里天池** - 国内头部竞赛平台,由阿里巴巴集团主办 - 特色道:电商销量预测、城市计算、金融风控 - 组队方式:支持3人组队,需提交代码和说明文档[^2] 3. **DataFountain** - 政府与企业的联合事平台,侧重产业应用 - 典型:交通流量预测、舆情分析、工业质检 4. **数学建模类竞赛** - MathorCup高校数学建模挑战:每年4月举办,含大数据专道,需提交完整建模论文[^1] - 全国大学生数学建模竞赛:每年9月,含大数据分析型 #### 二、参能力准备 1. **技术栈要求** - 编程基础:Python/R + SQL - 算法掌握:回归/分类/聚类算法、特征工程方法 - 工具使用:Pandas/Scikit-learn/TensorFlow 2. **学习路径建议** ```python # 示例:特征工程常用代码结构 from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split # 数据标准化 scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # 数据集划分 X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2) ``` 3. **团队组建要点** - 建议角色配置: - 数据预处理(1人) - 建模调参(2人) - 论文/报告撰写(1人) #### 三、事进阶技巧 1. **数据预处理规范** - 缺失值处理:多重插补法(MICE)优于简单删除 - 特征衍生:时序数据可构造滑动窗口统计量 2. **模型融合策略** $$F(x) = \alpha \cdot \text{XGBoost} + \beta \cdot \text{LightGBM} + \gamma \cdot \text{神经网络}$$ 通过Stacking方法集成不同基模型,可提升泛化能力[^3] 3. **论文撰写要点** - 需包含:问重述→假设说明→模型对比→灵敏度分析 - 可视化规范: - 特征重要性图用水平条形图 - 时序预测需标注置信区间
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值