题意:求一个序列最多删去一个元素后的最长连续的递增子序列长度。序列 a[l…r] 内元素严格递增,即al < al+1 <⋯ < ar。
题解:显然解题的关键是获得删除的这个数左右边最长最长连续的递增子序列长度,利用l[i],r[i]预处理,l[i]表示以a[i]为结尾的最长连续的递增子序列长度,r[i]表示以a[i]为开头的最长连续的递增子序列长度。
AC代码:
#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <algorithm>
#define int long long
using namespace std;
const int maxn=1e6+5;
int a[maxn],l[maxn],r[maxn];
main() {
int n,ans=1;
cin>>n;
for(int i=1; i<=n; i++)cin>>a[i];
l[1]=1;
for(int i=2; i<=n; i++) {
if(a[i]>a[i-1])l[i]=l[i-1]+1;
else l[i]=1;
ans=max(ans,l[i]);
}
r[n]=1;
for(int i=n; i>=2; i--) {
if(a[i]>a[i-1])r[i-1]=r[i]+1;
else r[i-1]=1;//注意这里是i-1
//cout<<i<<" "<<r[i]<<" "<<r[i-1]<<endl;
}
for(int i=2; i<=n-1; i++) {
if(a[i+1]>a[i-1]) {
ans=max(ans,l[i-1]+r[i+1]);
//cout<<i<<" "<<l[i-1]<<" "<<r[i+1]<<endl;
}
}
cout<<ans<<endl;
}