1. 数据库访问:
1.1. 合理使用索引:
- 为经常查询的字段创建索引,但不要过度使用,因为每个索引都会增加写操作的开销。
- 考虑使用覆盖索引(Covering Index),以减少对数据表的访问。
1.2. 查询优化:
- 优化查询语句,避免全表扫描,尽量使用索引。
- 使用合适的JOIN语句,确保JOIN字段上有索引。
- 考虑使用查询缓存,但在高并发写入环境中慎重使用。
1.3. 表设计优化:
- 使用合适的数据类型,避免使用过大的数据类型,减少存储空间。
- 垂直分割大表,将大表拆分成多个小表,提高查询性能。
- 水平拆表,选择合适分分库分表键,将数据量大,增量大的表分库分表,避免因数据量大导致查询性能低下。可选的中间件:ShardingSphere、Vitess、Cobar(Taobao TDDL)、MyCAT、TDB(Tencent Database)、Atlas(Netflix)、OceanBase Sharding(华为云)、AtlasDB Sharding等
- 避免使用TEXT和BLOB类型字段,因为它们会增加I/O开销。
- 冷热数据分离,从两方面考虑,一是定期归档大表,二是将业务使用的表(复杂查询)与客户使用的表不放在一数据库。
1.4. 硬件优化:
- 确保数据库服务器有足够的内存,以减少磁盘I/O。
- 使用快速的磁盘和RAID配置,以提高读写性能。
- 考虑使用SSD来替代传统磁盘,以提高随机读写性能。
1.5. 连接池和并发控制:
- 使用连接池管理数据库连接,避免频繁的连接和断开。
- 合理配置并发连接数,避免过多的并发连接导致性能下降。
1.7. 统计信息和优化器:
- 定期收集表和索引的统计信息,以保持优化器的准确性。
- 考虑使用强制索引提示(FORCE INDEX)来指导优化器选择正确的索引。
1.8. 定期维护:
- 定期进行数据库表的优化和碎片整理。
- 清理历史数据,删除不再需要的数据。
2. 网络通信:
2.1. CDN(内容分发网络)的使用:
- 使用CDN服务分发静态资源,如图片、样式表和脚本,减少用户请求的时延,提高访问速度。
- 将静态资源放置在离用户地理位置较近的CDN节点,降低网络延迟。
2.2. 合并和压缩资源:
- 合并多个CSS和JavaScript文件,减少页面加载时的请求数量。
- 使用压缩算法(如Gzip)对CSS、JavaScript和图片等进行压缩,减小文件大小,加速传输。
2.3. 异步加载和延迟加载:
- 使用异步加载和延迟加载策略,确保关键资源优先加载,提高首屏渲染速度。
- 将非关键资源延迟加载,以降低页面初始加载时间。
2.4. 减少HTTP请求次数:
- 合理设计页面结构,减少HTTP请求的数量。
- 使用CSS Sprites技术将多个小图标合并成一张大图,减少图标的请求次数。
2.5. 使用更高效的协议:
- 使用HTTPS协议提高数据传输的安全性,并享受HTTP/2协议带来的性能优势。
- HTTP/2支持多路复用,减少了网络延迟,提升页面加载速度。
2.6. DNS预解析和连接预建立:
- 使用DNS预解析,提前解析页面中的域名,减少DNS查询时间。
- 使用连接预建立,提前建立与服务器的连接,减少握手时间。
2.7. 缓存策略:
- 使用适当的缓存策略,使得重复访问的资源可以被缓存,减少服务器压力。
- 设置适当的缓存过期时间,确保用户获得最新的内容。
2.8. 移动端优化:
- 针对移动端网络环境,选择合适的图片格式和大小,以减小页面加载时间。
- 使用响应式设计和媒体查询,根据设备屏幕尺寸加载不同的资源。
2.9. 使用WebP格式图片:
- WebP是一种支持有损和无损压缩的图像格式,通常比JPEG和PNG更小,可以加速图片的加载。
2.10. 监控和优化:
- 使用监控工具实时追踪和分析网络性能,及时发现和解决潜在的问题。
- 定期进行性能测试,评估系统在不同网络条件下的表现,并做出相应的优化调整。
3. 后端缓存:
3.1. 对象级缓存:
- 缓存常用的业务对象,如商品信息、用户信息等,减少数据库读取次数。
- 使用分布式缓存,确保多个应用服务器之间共享相同的缓存数据。
3.2. 查询结果缓存:
- 缓存频繁的查询结果,如热门商品、推荐商品等,减轻数据库压力。
- 设置合理的缓存过期时间,确保缓存数据及时更新。
3.3. 本地缓存:
- 使用本地缓存,将一些短时效的数据存储在应用服务器的内存中,加速数据的读取。
- 使用合适的缓存库,如Ehcache、Guava Cache、caffeine等。
3.4. 缓存预热:
- 在系统启动或低峰期,预先加载一些热门数据到缓存中,提高用户访问时的响应速度。
- 避免在高峰期首次访问时才加载数据到缓存。
3.5. 分布式锁和缓存同步:
- 在分布式环境中,确保缓存的一致性,使用分布式锁来避免缓存失效后多个节点同时更新缓存的问题。
- 考虑使用缓存更新策略,如延迟双删(先删除缓存,再异步更新)。
3.6. 热点数据缓存:
- 针对一些常被访问的热点数据,增加缓存层,减轻数据库压力。
- 使用适当的缓存淘汰策略,如LRU(Least Recently Used)。
3.7. 异常处理和降级机制:
- 对于缓存访问异常,要有合理的处理机制,避免因为缓存问题导致整个系统异常。
- 考虑在缓存失效时,提供降级服务,如从数据库中获取数据。
3.8. 监控和性能分析:
- 使用监控工具实时追踪缓存性能,及时发现和解决潜在的问题。
- 定期进行性能测试,评估缓存的效果,并根据测试结果进行优化。
3.9. 缓存安全策略:
- 谨慎处理敏感信息的缓存,确保缓存中不包含用户隐私数据。
- 设置适当的缓存过期时间,避免数据长时间滞留。
- 考虑缓存的几个问题:缓存雪崩,缓存击穿,缓存穿透
4. 代码执行效率低:
4.1. 代码审查和优化:
- 进行代码审查,寻找和修复潜在的性能问题,确保代码质量。
- 使用性能分析工具(如Profiler)识别性能瓶颈,重点优化关键路径。
4.2. 数据结构和算法:
- 选择合适的数据结构和算法,确保在数据处理上使用高效的方式。
- 避免不必要的循环嵌套和递归,优化算法的时间复杂度。
4.3. 避免过度使用同步:
- 减小同步代码块的范围,避免全局锁的竞争,提高并发性能。
- 考虑使用乐观锁机制来减小锁粒度,提高并发度。
4.4. 慎重使用反射:
- 反射的性能开销较大,慎重使用,并考虑是否有更好的替代方案。
- 在可能的情况下,尽量避免频繁的反射调用。
4.5. JVM参数调优:
- 调整JVM参数,根据应用的需求设置合适的堆内存大小、垃圾回收策略等。
- 使用合适的垃圾回收器,根据实际情况选择Serial、Parallel、CMS、G1等回收器。
4.6. 使用并发集合:
- 使用Java的并发集合(如
ConcurrentHashMap
、CopyOnWriteArrayList
)来提高多线程环境下的性能。 - 避免使用传统的同步集合,以提高并发性能。
4.7. 懒加载和延迟初始化:
- 使用懒加载和延迟初始化的策略,只在需要时初始化对象,避免不必要的资源消耗。
- 注意线程安全问题,确保在多线程环境下的正确性。
4.8. 异常的处理:
- 避免在业务逻辑中频繁抛出异常,异常处理会带来额外的性能开销。
- 合理处理异常,避免不必要的资源浪费。