杭电1874(Floyd最短路)

畅通工程续(难度:1)

Time Limit: 3000/1000 MS (Java/Others)
Memory Limit: 32768/32768 K (Java/Others)

Problem Description

某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。

Input

本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0 < N < 200,0 < M < 1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0 <= A,B < N,A != B,0 < X < 10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0 <= S,T < N),分别代表起点和终点。

Output

对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出 -1.

Sample Input

3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2

Sample Output

2
-1

思路:

Floyd算法,求最短路径,很简单。
要注意输入权值时的判断条件 if ( path [a] [b] > x ) path [a] [b] = path [b] [a] = x。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

#define INF 0xfffffff
#define maxn 100
int path[maxn][maxn];
int n,m,a,b,x,s,t;

void floyd()
{
    for(int k=0;k<n;k++)
    {
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                if(path[i][j]>path[i][k]+path[k][j])
                {
                    path[i][j]=path[i][k]+path[k][j];
                }
            }
        }
    }
}

int main()
{
    while(cin>>n>>m)
    {
        //init
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                if(i==j) path[i][j]=0;
                else path[i][j]=INF;
            }
        }
        //input
        for(int i=0;i<m;i++)
        {
            cin>>a>>b>>x;
            if(path[a][b]>x) path[a][b]=path[b][a]=x;//没有这个判断会WA
        }
        cin>>s>>t;
        floyd();
        if(path[s][t]==INF)
        {
            cout<<-1<<endl;
        }
        else cout<<path[s][t]<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值