畅通工程续(难度:1)
Time Limit: 3000/1000 MS (Java/Others)
Memory Limit: 32768/32768 K (Java/Others)
Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0 < N < 200,0 < M < 1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0 <= A,B < N,A != B,0 < X < 10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0 <= S,T < N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出 -1.
Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2
Sample Output
2
-1
思路:
Floyd算法,求最短路径,很简单。
要注意输入权值时的判断条件 if ( path [a] [b] > x ) path [a] [b] = path [b] [a] = x。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define INF 0xfffffff
#define maxn 100
int path[maxn][maxn];
int n,m,a,b,x,s,t;
void floyd()
{
for(int k=0;k<n;k++)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(path[i][j]>path[i][k]+path[k][j])
{
path[i][j]=path[i][k]+path[k][j];
}
}
}
}
}
int main()
{
while(cin>>n>>m)
{
//init
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(i==j) path[i][j]=0;
else path[i][j]=INF;
}
}
//input
for(int i=0;i<m;i++)
{
cin>>a>>b>>x;
if(path[a][b]>x) path[a][b]=path[b][a]=x;//没有这个判断会WA
}
cin>>s>>t;
floyd();
if(path[s][t]==INF)
{
cout<<-1<<endl;
}
else cout<<path[s][t]<<endl;
}
return 0;
}