各种排序算法总结-Java版

这里showDetails标志表示是否输出算法排序的过程

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

/**
 * @Classname SortMethodStudy
 * @Description TODO
 * @Date 2021/5/19 15:22
 * @Created by yin
 */
public class SortMethodStudy {
    static boolean showDetails = true;
    
    public static void main(String[] args) {
        int[] ints = {35, 84, 21, 47, 15, 27, 68, 25, 20};
        quickSort(ints,0,ints.length-1);
        System.out.println(Arrays.toString(ints));
    }

    static void swap(int[] data, int i, int j) {
        int temp = data[i];
        data[i] = data[j];
        data[j] = temp;
    }

    // 冒泡排序:注意冒泡排序有一个剪枝逻辑
    static void bubbleSort(int[] data) {
        boolean changeFlag;
        for (int i = 1; i < data.length; i++) {
            changeFlag = false;
            for (int j = 1; j < data.length; j++) {
                if (data[j] < data[j - 1]) {
                    swap(data, j - 1, j);
                    changeFlag = true;
                }
            }
            if(showDetails) System.out.println(Arrays.toString(data)); // 显示路径
            if (!changeFlag) break; //本趟排序没有发生元素交换则整个序列已经有序,直接结束
        }
    }

    // 插入排序
    static void insertSort(int[] data) {
        for (int i = 1; i < data.length; i++) {
            for (int j = i - 1; j >= 0; j--) {
                if (data[j] > data[j + 1]) {
                    swap(data, j, j + 1);
                } else {
                    break;
                }
            }
            if(showDetails) System.out.println(Arrays.toString(data)); // 显示路径
        }
    }

    //选择排序
    static void chooseSort(int[] data) {
        for (int i = 0; i < data.length; i++) {
            int tempIndex = i;
            for (int j = i + 1; j < data.length; j++) {
                if (data[tempIndex] > data[j]) {
                    tempIndex = j;
                }
            }
            if (tempIndex != i) { //如果最小元素的索引不是i则交换索引为tempIndex和i的两个元素
                swap(data, tempIndex, i);
            }
            if(showDetails) System.out.println(Arrays.toString(data)); // 显示路径
        }
    }

    /**
     * 快速排序:
     * 通过一趟排序将待排记录按照一个基准值分隔成独立的两部分,其中一部分记录的值均比另一部分的值小
     * 对这两部分记录继续进行快速排序,以达到整个序列有序。
     **/
    public static void quickSort(int[] data, int low, int high) {
        int i, j, temp;
        if (low > high) {
            return;
        }
        i = low;
        j = high;
        //temp就是基准位
        temp = data[low];
        while (i < j) {
            // 从后往前找到第一个比temp小的值
            while (temp <= data[j] && i < j) {
                j--;
            }
            // 从左往右找到第一个比temp大的值
            while (temp >= data[i] && i < j) {
                i++;
            }
            //如果满足条件则交换
            if (i < j) {
                swap(data, i, j);
            }
        }
        //最后将基准为与i和j相等位置的数字交换
        data[low] = data[i];
        data[i] = temp;
        
        if(showDetails) System.out.println(Arrays.toString(data)); // 显示路径
        //递归调用左半数组
        quickSort(data, low, j - 1);
        //递归调用右半数组
        quickSort(data, j + 1, high);
    }

    /**
     * 希尔排序:
     * 希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序。
     * 希尔排序是把记录按一定增量分组(例如:增量为5,那么索引为0,5,10,15....的这些元素为一组),对每组使用直接插入排序算法排序;
     * 随着增量逐渐减少,每组包含的元素越来越多,当增量减至1时,所有元素被分成一组,算法便终止。
     */
    static void heerSort(int[] data) {
        heerSubSort(data, 5);
        heerSubSort(data, 2);
        heerSubSort(data, 1);
    }

    static void heerSubSort(int[] data, int step) {
        for (int i = 0; i < data.length; i += step) {
            for (int j = i - step; j >= 0; j -= step) {
                if (data[j] > data[j + step]) {
                    swap(data, j, j + step);
                } else {
                    break;
                }
            }
        }
        if(showDetails) System.out.println(Arrays.toString(data)); // 显示路径
    }

    /**
     * 计数排序:
     * 空间换时间,将值对应为index, 如果有重复,则记录数量。所以叫计数排序
     */
    public static void countingSort(int[] data) {
        int min = data[0];//待排数组最小值
        int max = data[0];//待排数组最大值
        for (int datum : data) {//查找最小值和最大值
            if (datum < min) {
                min = datum;
            }
            if (datum > max) {
                max = datum;
            }
        }
        int[] rateArray = new int[max - min + 1];//创建频数数组,大小为待排数组中数据出现的所有可能情况,也即是:max-min+1
        Arrays.fill(rateArray, 0);//全部填充为0
        for (int datum : data) {//遍历待排数组,统计每个数字出现的次数,每个元素在频数数组中的相对位置为:元素值-最小值
            rateArray[datum - min]++;
        }
        int index = 0;
        int index_rate = 0;
        while (index_rate < rateArray.length) {//依次取出所有已经排序的元素
            if (rateArray[index_rate] != 0) {
                data[index++] = min + index_rate;//通过相对位置恢复元素的本来值
                rateArray[index_rate]--;
            } else {
                index_rate++;
            }
        }
    }


    /**
     * 归并排序:
     * 将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序;
     * 对于子序列递归采用归并排序,直到子序列元素个数为1
     */
    public static int[] mergeSort(int[] data) {
        if (data == null || data.length < 2) {
            return data;
        }
        //将序列拆分为两个子序列
        int mid = data.length / 2;
        int[] left = Arrays.copyOfRange(data, 0, mid);
        int[] right = Arrays.copyOfRange(data, mid, data.length);

        if(showDetails) System.out.println(Arrays.toString(data)); // 显示路径
        
        //合并两个两个子序列,对于两个子序列递归使用归并排序
        return merge(mergeSort(left), mergeSort(right));
    }

    // 将两个归并排序拆分的两个子序列合并为一个序列
    public static int[] merge(int[] left, int[] right) {
        int[] result = new int[left.length + right.length];//新建一个数组,大小为两个待合并的数组的长度之和,存放合并结果
        for (int index = 0, index_left = 0, index_right = 0; index < result.length; index++) {//开始合并
            if (index_left >= left.length) {//左边的序列已经全部合并到了结果中,则直接将右边的序列合并到结果中
                result[index] = right[index_right++];
            } else if (index_right >= right.length) {//右边的序列已经全部合并到了结果中,则直接将左边的序列合并到结果中
                result[index] = left[index_left++];
            } else if (left[index_left] < right[index_right]) {//判断左边序列和右边序列当前要合并的元素的大小,保证合并的后的结果依然有序
                result[index] = left[index_left++];
            } else {
                result[index] = right[index_right++];
            }
        }
        return result;
    }


    /**
     * 基数排序:
     * 基数排序是分别对每一位(个,十,百...)进行排序,
     * 每次排序都在前一位已经排序的基础上进行,首先从最低位(个位)开始排序。
     */
    public static void radixSort(int[] data) {
        int max = data[0];
        for (int j : data) {//取得待排数组中的最大值
            if (j > max) {
                max = j;
            }
        }
        int maxDigit = 0;//最大值的位数
        while (max != 0) {//获取最大值的位数
            max = max / 10;
            maxDigit++;
        }
        List<List<Integer>> bucket = new ArrayList<>();
        for (int i = 0; i < 10; i++) {//每一位只可能是0-9,所以只需要建立10个桶
            bucket.add(new ArrayList<Integer>());
        }
        int mod = 10;
        int div = 1;
        for (int i = 0; i < maxDigit; i++, mod *= 10, div *= 10) {//从个位开始针对每一位的大小进行排序,直到最高位
            for (int k : data) {
                int bucketIndex = (k % mod) / div;//获取数据映射的桶的索引,桶的索引就是数据在当前排序的位的值
                bucket.get(bucketIndex).add(k);
            }
            int index = 0;
            for (List<Integer> integers : bucket) {//收集本次的排序结果并清空桶,方便下一次的排序
                for (Integer integer : integers) {
                    data[index++] = integer;
                }
                integers.clear();
            }
        }
    }


    /**
     * 堆排序:
     * 利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足小(大)根堆的性质:即父结点的键值或索引总是小于(或者大于)等于它的子节点。
     * 将所有待排序的元素序列构造大根堆,然后将根节点(此时根节点最大)与序列最后一个元素交换位置,此时最后一个元素最大,然后将最后一个元素剔除,也就是放到有序序列中。
     * 针对剩下的元素不断重复上述步骤,直到剩下的元素为1
     */
    public static int[] heapSort(int[] data) {
        if (data == null || data.length < 2) {
            return data;
        }
        for (int i = data.length / 2 - 1; i >= 0; i--) {//从最后一个非叶子节点开始向上构造大根堆,最后一个非叶子节点的索引为sortArray.length/2-1
            adjustHeap(data, i, data.length);
        }
        for (int j = data.length - 1; j > 0; j--) {//经过前面的构造,此时根节点已经是最大的元素
            swap(data, 0, j);//将根节点和最后一个节点交换位置
            adjustHeap(data, 0, j);//对剩下的元素继续构造大根堆
        }
        return data;
    }

    /**
     * 调整该节点使之符合大根堆(该节点的值比左右孩子都大)
     *
     * @param adjustNodeIndex 待调整的节点索引
     * @param length          调整的范围
     */
    public static void adjustHeap(int[] data, int adjustNodeIndex, int length) {
        int maxIndex = adjustNodeIndex;//最大元素的索引,默认为当前调整的节点索引
        int leftIndex = 2 * adjustNodeIndex + 1;//当前节点的左孩子索引
        int rightIndex = 2 * adjustNodeIndex + 2;//当前节点的右孩子索引
        if (leftIndex < length && data[leftIndex] > data[maxIndex]) {//若左孩子的值比最大元素大,则更新最大元素的索引
            maxIndex = leftIndex;
        }
        if (rightIndex < length && data[rightIndex] > data[maxIndex]) {//若右孩子的值比最大元素大,则更新最大元素的索引
            maxIndex = rightIndex;
        }
        if (maxIndex != adjustNodeIndex) {//如果父节点不是最大值,调整父节点为最大值并且调整与父节点交换的节点符合大根堆
            swap(data, maxIndex, adjustNodeIndex);
            adjustHeap(data, maxIndex, length);
        }
        if(showDetails) System.out.println(Arrays.toString(data)); // 显示路径
    }


    /**
     * 桶排序:
     * 桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。
     * 桶排序 假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别使用别的排序算法排序。
     */
    public static int[] bucketSort(int[] sortArray, int bucketSize) {
        if (sortArray == null || sortArray.length < 2) {
            return sortArray;
        }
        int min = sortArray[0];
        int max = sortArray[0];
        for (int value : sortArray) {
            if (value < min) {
                min = value;
            }
            if (value > max) {
                max = value;
            }
        }
        int bucketCount = (max - min) / bucketSize + 1;//桶的个数
        List<List<Integer>> bucket = new ArrayList<>();//每个桶是一个List
        for (int i = 0; i < bucketCount; i++) {//初始化桶
            bucket.add(new ArrayList<Integer>());
        }
        for (int value : sortArray) {//将数据放入每一个桶中
            List<Integer> temp_bucket = bucket.get((value - min) / bucketSize);
            temp_bucket.add(value);
        }
        int index = 0;
        for (int i = 0; i < bucketCount; i++) {//遍历所有桶分别进行排序,然后将数据拼接起来
            List<Integer> temp_bucket = bucket.get(i);
            if (temp_bucket.size() > 0) {
                int[] temp_bucket_array = new int[temp_bucket.size()];
                for (int j = 0; j < temp_bucket_array.length; j++) {
                    temp_bucket_array[j] = temp_bucket.get(j);
                }
                quickSort(temp_bucket_array, 0, temp_bucket_array.length - 1);//每个桶采用快速排序
                for (int j : temp_bucket_array) {
                    sortArray[index] = j;
                    index++;
                }
            }
        }
        return sortArray;
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cofer_Yin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值