文献阅读(四)基于藤 Copula 条件概率模型量化中国新疆复合干热极端事件对植被的影响 | 《Agricultural and Forest Meteorology》

一篇来自《Agricultural and Forest Meteorology》的好文,使用vine Copula方法量化复合干热事件对新疆植被的影响,方法部分着重阐述了vine Copula模型的机理,但本人水平有限不是很明白,欢迎进行相关研究的读者对本文阐述不当之处进行纠正,也希望熟悉Copula的读者可以在评论区留下自己的思考。

英文标题:Quantifying effects of compound dry-hot extremes on vegetation in Xinjiang (China) using a vine-copula conditional probability model
DOI:https://doi.org/10.1016/j.agrformet.2021.108658

一、研究背景

全球气候变化加剧了干旱、热浪等极端事件的频率与强度,复合干热事件通过降低土壤水分、增加蒸散作用,对植被生长和陆地生态系统结构功能造成灾难性影响(如光合作用减弱、养分循环受阻),尤其对干旱半干旱地区的植被脆弱性构成严重威胁。 新疆地处欧亚大陆内陆,属典型大陆性干旱气候,植被以草地为主(占86%),生态环境脆弱,易受干旱和高温胁迫。夏季(6-8月)是植被生长关键期,干热复合事件对区域水热平衡和植被动态影响显著。

二、已有研究不足

单一极端事件分析为主:多数研究聚焦干旱或高温对植被的单独影响,缺乏对两者复合效应的定量评估,忽略了干旱与高温的条件依赖性及其交互作用。
高维依赖建模局限:传统Copula方法在处理高维变量(如植被指数、干旱指数、温度指数)时,因变量对的异质依赖性,难以灵活构建复杂依赖结构。
区域研究不足:新疆作为“一带一路”关键区域,针对其植被对复合干热事件响应的定量研究较少,尤其缺乏不同土地利用类型的脆弱性分析。

三、创新点

提出藤 Copula 条件概率(vine-copula conditional probability,VCCP)模型,用于量化干热事件对植被动态的影响,藤 Copula 方法通过成对 Copula 构造(PCCs)将复杂的依赖结构分解为二元 Copula,与多参数 Copula 相比,在一般高维系统建模中提供了更大的灵活性。通过藤 Copula 函数建模归一化植被指数(NDVI)、标准化降水蒸散指数(SPEI)和标准化温度指数(STI)的依赖关系。VCCP 模型可评估多重干热事件下植被损失的条件概率,并揭示不同土地利用类型植被脆弱性的时空格局。

四、研究目标

1、 通过成对 Copula 构造建立 SPEI、STI 和 NDVI 的依赖结构
2、获取复合干热极端事件条件下植被损失的概率响应
3、揭示复合极端事件对不同植被土地利用类型的影响

五、研究方法

在这里插入图片描述

1. 计算SPEI

在这里插入图片描述

2. 计算STI

标准温度指数(STI)的计算过程与标准化降水指数(SPI)类似,但该过程不按固定尺度聚合温度数据。STI 的计算主要包括两个步骤: 1)通过根据经验概率分布函数拟合月温度数据集来获得边缘概率,这不仅可以避免对分布函数的假设,还能简化参数分布拟合的计算;2)使用等概率转换将经验分布函数转换为高斯分布。
在这里插入图片描述
在这里插入图片描述

3. 对NDVI、SPEI和STI进行相关性分析

通过计算三个变量之间的皮尔逊相关系数定性描述植被对干旱和高温极端条件的空间响应模式。

4. VCCP模型的开发

在 VCCP 模型中,根据 Bevacqua 等人(2017 年)的方法,使用Copula 函数将NDVI、SPEI 和 STI的联合概率分布纳入复合干热事件的分析。进而从联合依赖结构中推导出植被在复合干热情景下降至较低百分位数的条件概率。
藤 Copula 作为一种描述多变量、高维概率分布的图形结构,可分解为一系列二元条件 Copula,这一过程也被称为成对 Copula 构造(Bedford 和 Cooke,2002 年)。一般来说,成对 Copula 构造(PCC)是一系列边缘条件分布 F(xv)的组合。具体而言,根据 Joe(1996 年)的理论,对于二元条件情形:
在这里插入图片描述
h(·)表示条件分布函数。该公式可以根据条件概率的定义推导出来。特别地,对于规则藤(如 n 维分布),成对 Copula 构造通常涉及一系列关联树 T = ( T 1 , T 2 , … , T n ) T = (T_1, T_2, \ldots, T_n) T=(T1,T2,,Tn),以及匹配边集 E ( T ) = E 1 ∪ E 2 ∪ … ∪ E n E(T) = E_1 \cup E_2 \cup \ldots \cup E_n E(T)=E1E2En 和对应节点集 N ( T ) = N 1 ∪ N 2 ∪ … ∪ N n N(T) = N_1 \cup N_2 \cup \ldots \cup N_n N(T)=N1N2Nn。Aes 等人(2009 年)指出规则藤的两种最常见结构,即典型藤(C-vine)和 D-vine 结构。例如,n 维 C-vine 的密度函数可表示为:
在这里插入图片描述
其中, c i , i + j ∣ 1 : ( i − 1 ) c_{i, i+j|1:(i-1)} ci,i+j∣1:(i1)表示二元条件 Copula 密度,i 和 j 分别对应树结构和边结构。

事实上,三维藤结构可分解为三种 Copula 藤形式,每种形式同时属于 C 藤和 D 藤结构。在本研究中,为构建复合干热极端事件下植被退化的依赖关系,采用以下藤结构(联合概率密度):
在这里插入图片描述
在这里插入图片描述考虑多种复合干热极端情景,植被退化至不同百分位数(本研究涉及第 50、30、20 和 10 百分位数)的条件概率可通过公式(7)-(9)的 VCCP 模型获得:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
为评估所提方法在 SPEI、NDVI 和 STI 高维依赖建模中的性能,采用基于条件分布的抽样模拟生成随机向量 ( V 1 , V 2 , V 3 ) (V_1, V_2, V_3) (V1,V2,V3),并与观测值对比(Aes 等,2009 年)。首先,在区间 [0, 1] 内随机生成三个独立均匀分布的 w 1 , w 2 , w 3 w_1, w_2, w_3 w1,w2,w3;然后,通过以下公式获取随机变量 ( v 1 , v 2 , v 3 ) (v_1, v_2, v_3) (v1,v2,v3)
在这里插入图片描述
其中 ( u 1 , u 2 , u 3 ) (u_1 ,u_2 ,u_3) (u1,u2,u3)表示区间 [0, 1] 上的三维随机向量。本研究采用 Bevacqua 等(2017 年)开发的 R 软件包 CDVineCopulaConditional 实现所有计算过程。

本研究提出两步法构建 Copula,包括边缘分布拟合和基于最大对数似然的 Copula 参数估计(Joe,1997 年)。采用正态分布、对数正态分布、威布尔分布、伽马分布和逻辑分布拟合月 NDVI 序列,通过 Kolmogorov-Smirnov(KS)检验、赤池信息准则(AIC)和贝叶斯信息准则(BIC)确定最优边缘分布。SPEI 和 STI 序列作为统计量采用正态分布拟合。对于每个成对 Copula,从六种常见类型(高斯、学生 t、Clayton、Gumbel、Frank、Joe)及其旋转版本(用于刻画负依赖)中选择最合适的 Copula 函数。六种 Copula 列于表 2,对应的旋转类型(如 G90、SG 和 C90-C270)可参考 Brechmann 和 Schepsmeier(2013 年)及 Nikoloulopoulos 等(2012 年)的研究。最优 Copula 通过最小 AIC 和 BIC 值确定。
在这里插入图片描述

六、研究结果

1. NDVI、SPEI 和 STI 之间的空间相关模式

在这里插入图片描述

2. 植被脆弱性评估

2.1 NDVI、SPEI 和 STI 之间的依赖结构

具有相应的理论分布的像元总数
在这里插入图片描述
VCCP 模型包含所选像素的双变量 copula 函数和每个节点的参数
在这里插入图片描述

2.2 VCCP 模型的可靠性验证

如图所示,大多数 NDVI-SPEI、NDVI-STI 和 SPEI-STI 观测对(黑色圆点)均位于条件概率函数的高密度区域。因此,多变量概率框架被认为是评估极端组合条件下植被脆弱性风险的可靠方法。
在这里插入图片描述

2.3 不同情景下植被损失概率

在这里插入图片描述
复合干热事件下 8 月植被脆弱性的条件概率。(a)-(d) 分别表示 NDVI 损失低于第 0.5、0.3、0.2 和 0.1 分位数的情况。
在这里插入图片描述
6-8 月复合干热情景下 NDVI 损失低于第 50、30、20 和 10 百分位数的 Pmax、Pmin 和 Pave

七、主要研究结论

  1. 植被响应的时空异质性
    • 植被对干旱的响应呈现“北强南弱”,对高温的响应则“南快北慢”;夏季(尤其8月)干热复合事件对植被的综合胁迫最强。
  2. 极端情景下的高脆弱性
    • 极端干热情景(SPEI≤-1.3,STI≥1.3)下,8月植被损失概率(NDVI<50th分位数)平均达58.2%,显著高于7月(44.0%)和6月(33.1%)。
    • 新疆北部和西南部(如天山、阿尔泰山山区草地)对干热事件的抵抗力最差,草地植被因浅根系和高海拔气候,脆弱性高于农田和森林。
  3. 模型有效性
    • VCCP模型能有效捕捉高维变量间的复杂依赖,为复合极端事件的生态影响评估提供了新框架。

八、研究的局限性

  1. 非气候因素未纳入:未考虑人类活动(灌溉、放牧)和自然干扰(荒漠化、野火)对植被的影响,可能导致脆弱性评估存在偏差。
  2. 时间尺度限制:仅聚焦夏季(6-8月),未分析其他季节的干热事件影响,且研究期为1983-2015年,对长期气候变化趋势的捕捉有限。
  3. 模型简化:藤Copula结构的选择可能影响依赖关系解析,部分复杂地形下的微气候效应未充分考虑。

九、未来展望

  1. 多因素整合:纳入人类活动、土壤特性等非气候因子,构建更全面的植被脆弱性评估框架。
  2. 多时间尺度分析:扩展研究周期,结合不同季节和年代际变化,揭示长期气候变化下干热事件的累积效应。
  3. 区域对比与应用:将VCCP模型推广至其他干旱半干旱区(如中亚、北非),为全球变化下的生态适应策略提供普适性参考。
  4. 机理深化:结合生态过程模型(如碳水循环模型),解析干热复合胁迫对植被生理机制的影响,提升预测精度。
    该研究通过方法创新与区域聚焦,填补了复合极端事件对植被影响的定量研究空白,为气候变化下的生态风险管理提供了重要科学支撑,其局限性也为后续研究指明了拓展方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值