- 博客(6)
- 收藏
- 关注
原创 如何提升视觉产品中算法系统中的运行性能
前面的几篇文章下来,整个多路视频流下的车流量统计系统的框架就搭起来了,但是在原始功能设计的时候,期望能在已有硬件基础上,可以实时解析到十路数据,目前的代码实现下,还有点性能问题。现在的视频帧率是20 FPS,如果是正常做项目,稍微卡一下视频帧率,微调下跟踪算法,事情就过去了,但是既然是写文章,正好借这个机会,跟大家聊一聊,视觉类的产品,如果遇到类似的产品运行性能不及预期,我们该怎么做。
2025-02-22 23:36:32
2093
原创 教你快速搭建一套多路视频流实时处理系统 - 车流量统计项目框架成型
我们知道了怎么拉流,怎么量化部署检测模型,怎么工程化跟踪算法,那基本上搭建一套车流量统计算法系统的最核心的技术组件就具备了,这篇文章我们重点讲这块内容,系统该怎么搭?
2025-02-11 21:45:26
984
原创 小白也能快速搭的多路视频推拉流服务
这是 “在实战中学AI-车流量统计项目”的第三篇,要想做车流量统计,原始数据的获取必不可少,这篇文章就是教大家如何快速的在服务端搭建一套多路视频的推拉流服务,我们的输入是多路(可扩展)的rtsp流,输出是对应解码好的图片数据,该图片数据用于做后续的图像识别。该系列的文章列表:第一篇:“在实战中学AI-车流量统计项目-开篇”第二篇:“在实战中学AI-车流量统计项目-YOLO11车辆检测-YOLO11模型的部署”
2025-01-12 12:38:18
1669
原创 在实战中学AI-车流量统计项目-YOLOV11车辆检测-YOLOV11模型的部署
考虑实际落地中部署推理资源消耗,速度与模型精度之间的均衡,同时,车辆属于比较通用场景的目标检测,我们将YOLOV11作为最终的模型选择,目前官方开源的模型基于coco数据集训练,里面已经包含了车辆相关类别,经测试,在监控视角下效果基本可用,所以,在落地过程中,我们先用这个模型来打通部署链路,后面再逐步优化模型性能。在Nvidia的硬件下做部署,部署框架优先选择官方框架TensorRT,下面重点讲述如何用TensorRT部署YOLOV11模型。
2025-01-12 12:32:57
1799
原创 在实战中学AI-车流量统计项目-开篇
任何一个算法项目,需求定义清楚是可以进行后面研发的基础,所以,首先要确认什么叫“车流量”,这部分的定义不是上面的那种名词解释,而是面向计算机可以理解的了的定义。定义好问题,也是算法工程师非常重要的技能。这个项目关注场景为安放在道路中间的摄像头,视野可涵盖正向(即迎着摄像头方向)和反向(即顺着摄像头方向)行驶的车辆,需分别统计客户指定时间段内,正向和反向主路上车流量均值。在关注行驶方向上定义与道路垂直的横截线,越过该线的车辆即计数,并用于统计车流量。
2025-01-12 12:27:21
393
原创 八千字长文详解ByteTrack,tracking by detection 范式下一大力作
看一篇论文之前,先要看它能解决什么问题?我们都知道多目标跟踪(MOT)是用来做视频中物体的边框和ID估计的,只是tracking by detection 范式下,目标的边框更多由检测模型提供,跟踪算法负责补全以及做帧间的目标关联。以往的方法,有一个弊端,即检测框得分高的目标才会参与多目标跟踪,像遮挡这种情况目标得分会低一些,因为既定的机制,这样的目标会被舍弃,进而会带来真实对象丢失和轨迹碎片化问题。
2025-01-12 12:26:15
1190
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人