题目意思
题目背景
B 市和 T 市之间有一条长长的高速公路,这条公路的某些地方设有路标,但是大家都感觉路标设得太少了,相邻两个路标之间往往隔着相当长的一段距离。为了便于研究这个问题,我们把公路上相邻路标的最大距离定义为该公路的“空旷指数”。
题目描述
现在政府决定在公路上增设一些路标,使得公路的“空旷指数”最小。他们请求你设计一个程序计算能达到的最小值是多少。请注意,公路的起点和终点保证已设有路标,公路的长度为整数,并且原有路标和新设路标都必须距起点整数个单位距离。
输入格式
第 1行包括三个数 L,N,KL,N,K,分别表示公路的长度,原有路标的数量,以及最多可增设的路标数量。
第 2 行包括递增排列的 NN 个整数,分别表示原有的 NN 个路标的位置。路标的位置用距起点的距离表示,且一定位于区间 [0,L][0,L] 内。
输出格式
输出 11 行,包含一个整数,表示增设路标后能达到的最小“空旷指数”值。
分析
假如你在位置p
p往右走第一个路标,是q
二分的空旷指数是mid
p->q
①距离够,p->q
②距离不够,新加一个路标p+mid,p->q+mid
得到最少的插入路标数<=k
mid满足,r=mid-1
代码如下
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 1011000;
int len,n,m; //公路长度,原有路标数,可增加的路标数
int a[N];
bool check(int mid)
{
int cnt=0;
for(int i=2;i<=n;i++)
{
cnt+=(a[i]-a[i-1]) / mid;
if((a[i]-a[i-1]) % mid==0) //a[i] - a[i-1] 必须加括号!!!
--cnt;
if(cnt>m) return false;//需要的路标数大于给的,设置的空旷指数太小,需要放大 a[mid] < target
}
return true; //cnt<=m,即a[mid] >=target
}
int main()
{
cin>>len>>n>>m;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
int l=0,r=len;
while(l<=r)
{
int mid=(l+r)/2;
if(check(mid)) r=mid-1; // 即a[mid] >=target,所以return r是小于,l是大于等于,题目要求大于等于
else l=mid+1;
}
cout<<l;
}