Android有效解决加载大图片时内存溢出的问题

尽量不要使用setImageBitmap或setImageResource或BitmapFactory.decodeResource来设置一张大图,
因为这些函数在完成decode后,最终都是通过java层的createBitmap来完成的,需要消耗更多内存。

因此,改用先通过BitmapFactory.decodeStream方法,创建出一个bitmap,再将其设为ImageView的 source,
decodeStream最大的秘密在于其直接调用JNI>>nativeDecodeAsset()来完成decode,
无需再使用java层的createBitmap,从而节省了java层的空间。
如果在读取时加上图片的Config参数,可以跟有效减少加载的内存,从而跟有效阻止抛out of Memory异常
另外,decodeStream直接拿的图片来读取字节码了, 不会根据机器的各种分辨率来自动适应, 
使用了decodeStream之后,需要在hdpi和mdpi,ldpi中配置相应的图片资源, 
否则在不同分辨率机器上都是同样大小(像素点数量),显示出来的大小就不对了。

另外,以下方式也大有帮助:
1. InputStream is = this.getResources().openRawResource(R.drawable.pic1);
     BitmapFactory.Options options=new BitmapFactory.Options();
     options.inJustDecodeBounds = false;
     options.inSampleSize = 10;   //width,hight设为原来的十分一
     Bitmap btp =BitmapFactory.decodeStream(is,null,options);
2. if(!bmp.isRecycle() ){
         bmp.recycle()   //回收图片所占的内存
         system.gc()  //提醒系统及时回收
}

以下奉上一个方法:

Java代码

   1. /**
   2.  * 以最省内存的方式读取本地资源的图片
   3.  * @param context
   4.  * @param resId
   5.  * @return
   6.  */  
   7. public static Bitmap readBitMap(Context context, int resId){  
   8.     BitmapFactory.Options opt = new BitmapFactory.Options();  
   9.     opt.inPreferredConfig = Bitmap.Config.RGB_565;   
  10.     opt.inPurgeable = true;  
  11.     opt.inInputShareable = true;  
  12.        //获取资源图片  
  13.     InputStream is = context.getResources().openRawResource(resId);  
  14.         return BitmapFactory.decodeStream(is,null,opt);  
  15. }


================================================================================
Android内存溢出的解决办法

转自:http://www.cppblog.com/iuranus/archive/2010/11/15/124394.html?opt=admin

昨天在模拟器上给gallery放入图片的时候,出现java.lang.OutOfMemoryError: bitmap size exceeds VM budget 异常,图像大小超过了RAM内存。
      模拟器RAM比较小,只有8M内存,当我放入的大量的图片(每个100多K左右),就出现上面的原因。
由于每张图片先前是压缩的情况,放入到Bitmap的时候,大小会变大,导致超出RAM内存,具体解决办法如下:

//解决加载图片 内存溢出的问题
                    //Options 只保存图片尺寸大小,不保存图片到内存
                BitmapFactory.Options opts = new BitmapFactory.Options();
                //缩放的比例,缩放是很难按准备的比例进行缩放的,其值表明缩放的倍数,SDK中建议其值是2的指数值,值越大会导致图片不清晰
                opts.inSampleSize = 4;
                Bitmap bmp = null;
                bmp = BitmapFactory.decodeResource(getResources(), mImageIds[position],opts);                             

                ...              

               //回收
                bmp.recycle();

通过上面的方式解决了,但是这并不是最完美的解决方式。

通过一些了解,得知如下:

优化Dalvik虚拟机的堆内存分配

对 于Android平台来说,其托管层使用的Dalvik Java VM从目前的表现来看还有很多地方可以优化处理,比如我们在开发一些大型游戏或耗资源的应用中可能考虑手动干涉GC处理,使用 dalvik.system.VMRuntime类提供的setTargetHeapUtilization方法可以增强程序堆内存的处理效率。当然具体 原理我们可以参考开源工程,这里我们仅说下使用方法:   private final static float TARGET_HEAP_UTILIZATION = 0.75f; 在程序onCreate时就可以调用 VMRuntime.getRuntime().setTargetHeapUtilization(TARGET_HEAP_UTILIZATION); 即可。


Android堆内存也可自己定义大小

    对于一些Android项目,影响性能瓶颈的主要是Android自己内存管理机制问题,目前手机厂商对RAM都比较吝啬,对于软件的流畅性来说RAM对 性能的影响十分敏感,除了 优化Dalvik虚拟机的堆内存分配外,我们还可以强制定义自己软件的对内存大小,我们使用Dalvik提供的 dalvik.system.VMRuntime类来设置最小堆内存为例:

private final static int CWJ_HEAP_SIZE = 6* 1024* 1024 ;

VMRuntime.getRuntime().setMinimumHeapSize(CWJ_HEAP_SIZE); //设置最小heap内存为6MB大小。当然对于内存吃紧来说还可以通过手动干涉GC去处理


bitmap 设置图片尺寸,避免 内存溢出 OutOfMemoryError的优化方法
★android 中用bitmap 时很容易内存溢出,报如下错误:Java.lang.OutOfMemoryError : bitmap size exceeds VM budget

● 主要是加上这段:
BitmapFactory.Options options = new BitmapFactory.Options();
                options.inSampleSize = 2;

● eg1:(通过Uri取图片)
private ImageView preview;
BitmapFactory.Options options = new BitmapFactory.Options();
                    options.inSampleSize = 2;//图片宽高都为原来的二分之一,即图片为原来的四分之一
                    Bitmap bitmap = BitmapFactory.decodeStream(cr
                            .openInputStream(uri), null, options);
                    preview.setImageBitmap(bitmap);
以上代码可以优化内存溢出,但它只是改变图片大小,并不能彻底解决内存溢出。
● eg2:(通过路径去图片)
private ImageView preview;
private String fileName= "/sdcard/DCIM/Camera/2010-05-14 16.01.44.jpg";
BitmapFactory.Options options = new BitmapFactory.Options();
                options.inSampleSize = 2;//图片宽高都为原来的二分之一,即图片为原来的四分之一
                        Bitmap b = BitmapFactory.decodeFile(fileName, options);
                        preview.setImageBitmap(b);
                        filePath.setText(fileName);

★Android 还有一些性能优化的方法:
●  首先内存方面,可以参考 Android堆内存也可自己定义大小 和 优化Dalvik虚拟机的堆内存分配

●  基础类型上,因为Java没有实际的指针,在敏感运算方面还是要借助NDK来完成。Android123提示游戏开发者,这点比较有意思的是Google 推出NDK可能是帮助游戏开发人员,比如OpenGL ES的支持有明显的改观,本地代码操作图形界面是很必要的。

●  图形对象优化,这里要说的是Android上的Bitmap对象销毁,可以借助recycle()方法显示让GC回收一个Bitmap对象,通常对一个不用的Bitmap可以使用下面的方式,如

if(bitmapObject.isRecycled()==false) //如果没有回收  
         bitmapObject.recycle();   

●  目前系统对动画支持比较弱智对于常规应用的补间过渡效果可以,但是对于游戏而言一般的美工可能习惯了GIF方式的统一处理,目前Android系统仅能预览GIF的第一帧,可以借助J2ME中通过线程和自己写解析器的方式来读取GIF89格式的资源。

● 对于大多数Android手机没有过多的物理按键可能我们需要想象下了做好手势识别 GestureDetector 和重力感应来实现操控。通常我们还要考虑误操作问题的降噪处理。

Android堆内存也可自己定义大小

   对于一些大型Android项目或游戏来说在算法处理上没有问题外,影响性能瓶颈的主要是Android自己内存管理机制问题,目前手机厂商对RAM都比 较吝啬,对于软件的流畅性来说RAM对性能的影响十分敏感,除了上次Android开发网提到的 优化Dalvik虚拟机的堆内存分配外,我们还可以强制定义自己软件的对内存大小,我们使用Dalvik提供的 dalvik.system.VMRuntime类来设置最小堆内存为例:

private final static int CWJ_HEAP_SIZE = 6* 1024* 1024 ;

VMRuntime.getRuntime().setMinimumHeapSize(CWJ_HEAP_SIZE); //设置最小heap内存为6MB大小。当然对于内存吃紧来说还可以通过手动干涉GC去处理,我们将在下次提到具体应用。

优化Dalvik虚拟机的堆内存分配

对 于Android平台来说,其托管层使用的Dalvik JavaVM从目前的表现来看还有很多地方可以优化处理,比如我们在开发一些大型游戏或耗资源的应用中可能考虑手动干涉GC处理,使用 dalvik.system.VMRuntime类提供的setTargetHeapUtilization方法可以增强程序堆内存的处理效率。当然具体 原理我们可以参考开源工程,这里我们仅说下使用方法:   private final static floatTARGET_HEAP_UTILIZATION = 0.75f; 在程序onCreate时就可以调用 VMRuntime.getRuntime().setTargetHeapUtilization(TARGET_HEAP_UTILIZATION); 即可。

 

 

介绍一下图片占用进程的内存算法吧。
android中处理图片的基础类是Bitmap,顾名思义,就是位图。占用内存的算法如下:
图片的width*height*Config。
如果Config设置为ARGB_8888,那么上面的Config就是4。一张480*320的图片占用的内存就是480*320*4 byte。
前面有人说了一下8M的概念,其实是在默认情况下android进程的内存占用量为16M,因为Bitmap他除了java中持有数据外,底层C++的 skia图形库还会持有一个SKBitmap对象,因此一般图片占用内存推荐大小应该不超过8M。这个可以调整,编译源代码时可以设置参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值