目录
一、简介
1.1、特点
二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,二分查找有两个要求:
- 线性表必须采用顺序存储结构
- 线性表中元素按关键字有序排列
1.2、实现思路
二分查找查询的大致思路:每次取线性表中间位置的值与待查关键字的值进行比较:
- 如果待查关键字的值比中间位置的值小,则在前半部分循环这个查找的过程
- 如果待查关键字的值比中间位置的值大,则在后半部分循环这个查找的过程
- 直到待查关键字的值和中间位置的值相等,否则线性表中没有待查的关键字
二、maven依赖
pom.xml
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.16.14</version>
</dependency>
</dependencies>
本文中springboot的版本还是2.6.0
三、递归方式
3.1、代码实现
/**
* 二分查找法
*
* @param arr 要查找的数组(必须采用顺序存储结构,而且表中元素按关键字有序排列)
* @param startIndex 从要查找数组的哪个索引开始
* @param endIndex 从要查找数组的哪个索引结束
* @param targetValue 要查找的值
* @return 如果查询到则返回该数据在数组中的索引
* 如果未查到则返回-1
*/
public static int binarySearch(int[] arr, int startIndex, int endIndex, int targetValue) {
if (startIndex < 0 || endIndex >= arr.length) {
log.info("索引值应该大于-1,并且小于数组的长度减1,此时的开始索引:{},结束索引:{}", startIndex, endIndex);
return -1;
}
if (startIndex > endIndex) {
log.info("开始索引必须大于结束索引,此时的开始索引:{},结束索引:{}", startIndex, endIndex);
return -1;
}
if (targetValue < arr[startIndex]) {
log.info("要查询的值【{}】小于数组的最小值【{}】", targetValue, arr[startIndex]);
return -1;
}
if (targetValue > arr[endIndex]) {
log.info("要查询的值【{}】大于数组的最小值【{}】", targetValue, arr[endIndex]);
return -1;
}
log.info("从索引start={}到索引end={},要检索的数组范围为:{}", startIndex, endIndex, Arrays.copyOfRange(arr, startIndex, endIndex + 1));
//获取中间值及其索引
int midIndex = (startIndex + endIndex) / 2;
int midValue = arr[midIndex];
log.info("此时要检索的数组的中间值为:{},索引为:{}", midValue, midIndex);
if (targetValue < midValue) {
log.info("目标元素【{}】小于中间值【{}】,接下来从索引start={}到索引end={}进行检索", targetValue, midValue, startIndex, midIndex - 1);
return binarySearch(arr, startIndex, midIndex - 1, targetValue);
} else if (targetValue > midValue) {
log.info("目标元素【{}】大于中间值【{}】,接下来从索引start={}到索引end={}进行检索", targetValue, midValue, midIndex + 1, endIndex);
return binarySearch(arr, midIndex + 1, endIndex, targetValue);
} else {
log.info("目标元素【{}】等于中间值【{}】,找到数据,索引值为:{}", targetValue, midValue, midIndex);
return midIndex;
}
}
public static void main(String[] args) {
//注意此数组应该是线性的,递增或者递减(本文是递增)
//如果是递减得修改算法里的条件判断,思路一样
int int[] arr = new int[]{3, 7, 8, 13, 14, 16, 18, 28, 30};
//调用递归方式的二分查找法
int i = binarySearch(arr, 0, arr.length-1, 8);
log.info("递归方式实现二分查找法查询结果:{}", i);
}
3.2、数据流向过程
假设我们在数组中查找 8 ,那么查找的数据流程如下表格:(蓝色的表示要查找的范围)
数组索引 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
原数组元素(查找8) | 3 | 7 | 8 | 13 | 14 | 16 | 18 | 28 | 30 |
第一次数组查找范围 | 3 | 7 | 8 | 13 | 14 | 16 | 18 | 28 | 30 |
中间值14,(8<14) | - | - | - | - | 14 | - | - | - | - |
第二次数组查找范围 | 3 | 7 | 8 | 13 | 14 | 16 | 18 | 28 | 30 |
中间值7,(8>7) | - | 7 | - | - | - | - | - | - | - |
第三次数组查找范围 | 3 | 7 | 8 | 13 | 14 | 16 | 18 | 28 | 30 |
中间值8,(8==8) | - | - | 8 | - | - | - | - | - | - |
两个值相等 | - | - | 找到了 | - | - | - | - | - | - |
3.3、数据查找流程
从索引start=0到索引end=8,要检索的数组范围为:[3, 7, 8, 13, 14, 16, 18, 28, 30]
此时要检索的数组的中间值为:14,索引为:4
目标元素【8】小于中间值【14】,接下来从索引start=0到索引end=3进行检索
从索引start=0到索引end=3,要检索的数组范围为:[3, 7, 8, 13]
此时要检索的数组的中间值为:7,索引为:1
目标元素【8】大于中间值【7】,接下来从索引start=2到索引end=3进行检索
从索引start=2到索引end=3,要检索的数组范围为:[8, 13]
此时要检索的数组的中间值为:8,索引为:2
目标元素【8】等于中间值【8】,找到数据,索引值为:2
递归方式实现二分查找法查询结果:2
四、迭代方式
4.1、代码实现
/**
* 二分查找法
*
* @param arr 要查找的数组(必须采用顺序存储结构,而且表中元素按关键字有序排列)
* @param targetValue 要查找的值
* @return 如果查询到则返回该数据在数组中的索引
* 如果未查到则返回-1
*/
public static int binarySearch(int[] arr, int targetValue) {
//定义最小索引
int startIndex = 0;
//定义最大索引
int endIndex = arr.length - 1;
//循环查找(不要越界)
while (startIndex <= endIndex) {
log.info("从索引start={}到索引end={},要检索的数组范围为:{}", startIndex, endIndex, Arrays.copyOfRange(arr, startIndex, endIndex + 1));
//定义中间值的索引
int midIndex = (startIndex + endIndex) / 2;
//定义中间值
int midValue = arr[midIndex];
log.info("此时要检索的数组的中间值为:{},索引为:{}", midValue, midIndex);
if (targetValue < midValue) {
//要查找的值小于中间值
endIndex = midIndex - 1;
log.info("目标元素【{}】小于中间值【{}】,接下来从索引start={}到索引end={}进行检索", targetValue, midValue, startIndex, midIndex - 1);
} else if (targetValue > midValue) {
//要查找的值大于中间值
startIndex = midIndex + 1;
log.info("目标元素【{}】大于中间值【{}】,接下来从索引start={}到索引end={}进行检索", targetValue, midValue, midIndex + 1, endIndex);
} else {
//查找到要找的值
log.info("目标元素【{}】等于中间值【{}】,找到数据,索引值为:{}", targetValue, midValue, midIndex);
return midIndex;
}
}
return -1;
}
public static void main(String[] args) {
//注意此数组应该是线性的,递增或者递减(本文是递增)
//如果是递减得修改算法里的条件判断,思路一样
int int[] arr = new int[]{3, 7, 8, 13, 14, 16, 18, 28, 30};
//调用迭代方式的二分查找法
int result = binarySearch(arr, 28);
log.info("迭代方式实现二分查找法查询结果(索引值):{}", result);
}
4.2、数据流向过程
假设我们在数组中查找 28 这个元素,那么查找的数据流程如下表格:(蓝色的表示要查找的范围)
数组索引 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
原数组元素(查找8) | 3 | 7 | 8 | 13 | 14 | 16 | 18 | 28 | 30 |
第一次数组查找范围 | 3 | 7 | 8 | 13 | 14 | 16 | 18 | 28 | 30 |
中间值14,(28>14) | - | - | - | - | 14 | - | - | - | - |
第二次数组查找范围 | 3 | 7 | 8 | 13 | 14 | 16 | 18 | 28 | 30 |
中间值18,(28>18) | - | - | - | - | - | - | 18 | - | - |
第三次数组查找范围 | 3 | 7 | 8 | 13 | 14 | 16 | 18 | 28 | 30 |
中间值28,(28==28) | - | - | - | - | - | - | - | 28 | - |
两个值相等 | - | - | - | - | - | - | - | 找到了 | - |
4.3、数据查找流程
从索引start=0到索引end=8,要检索的数组范围为:[3, 7, 8, 13, 14, 16, 18, 28, 30]
此时要检索的数组的中间值为:14,索引为:4
目标元素【28】大于中间值【14】,接下来从索引start=5到索引end=8进行检索
从索引start=5到索引end=8,要检索的数组范围为:[16, 18, 28, 30]
此时要检索的数组的中间值为:18,索引为:6
目标元素【28】大于中间值【18】,接下来从索引start=7到索引end=8进行检索
从索引start=7到索引end=8,要检索的数组范围为:[28, 30]
此时要检索的数组的中间值为:28,索引为:7
目标元素【28】等于中间值【28】,找到数据,索引值为:7
迭代方式实现二分查找法查询结果(索引值):7
结语
可能有些小伙伴不知道,索引 加1或者减1 的原因:
- 关于数组,假设一个数组的长度是 9 ,数组的下标是从 0 开始的,最大的下标就是 8 ,最后一个元素就是 a[8] ,相对长度来说,数组的索引就是 数组长度减1
- 关于中间值比较的索引,因为二分查找中要求顺序存储并且是有序排列,如果是递增的,也就是左边的数据小于中间值,右边的数据大于中间值,中间值的索引是 midIndex ,查找的值比中间值小,则我们只需要比较开始索引到 midIndex-1 这一段数据了,查找的值比中间值小,则我们只需要比较 midIndex+1 到结束索引这一段数据了,如果是递减的,就反过来就行了
多看两边我按个数据流向的图就容易理解了,希望你也能掌握。