DBeaver 取消自动提交

本文介绍如何在DBeaver中取消自动提交功能,通过简单步骤,用户可以在进行数据库操作时更好地控制提交时机,避免意外的数据更改。文章还提醒用户在取消自动提交后,需手动确认修改后再提交。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相信来看这篇文章的朋友都使用过或接触过 DBeaver 这款数据库连接管理工具。

个人还是比较喜欢这款工具的,社区版免费,支持连接各种类型的数据库,本人用DBeaver连过 mysql、oracle、sql server、人大金仓、达梦数据库,大伙可以尝试一下。

进入正题,怎么取消 自动提交 操作呢?
1)点击窗口选择 “首选项”
2)打开DBeaver下拉菜单选择 “连接类型”
3)取消勾选 “自动提交”

取消了 “自动提交”,那下次确定修改数据无误后记得提交哦!

在这里插入图片描述

在这里插入图片描述

### 关于AI辅助英文写作的工具与方法 #### 工具概述 目前市场上存在多种基于人工智能技术开发的英文写作辅助工具,这些工具有助于提升写作者的语言表达能力、语法准确性以及文章结构优化。部分工具还能够提供实时反馈和改进建议,帮助用户提高写作效率。 一种常见的应用场景是在教育领域中利用智能代理来支持学生完成各种学习目标[^3]。例如,在线平台可以集成自然语言处理算法以检测拼写错误、语法问题并提供建设性的修改意见。此外,某些高级功能还包括风格调整建议、词汇多样性增强提示等特性。 #### 技术实现方式 对于构建此类应用程序而言,通常会涉及多个关键技术环节,比如但不限于以下方面: - 数据收集与预处理阶段需要获取大量高质量语料库作为训练基础; - 特征工程过程中则要提取有效信息用于后续建模操作; - 模型架构设计需考虑具体业务需求而定,可能采用传统机器学习方法或者深度神经网络框架; - 训练完成后还需经过严格的验证流程确保其泛化能力和稳定性表现良好;最后通过持续迭代改进进一步完善产品体验[^2]。 以下是Python代码片段展示如何加载预训练好的BERT模型来进行简单的句子相似度计算任务: ```python from sentence_transformers import SentenceTransformer, util model = SentenceTransformer('all-MiniLM-L6-v2') sentence1 = "This is an example of using BERT for text similarity." sentence2 = "Another instance demonstrating the use case with different wording." embedding1 = model.encode(sentence1) embedding2 = model.encode(sentence2) cosine_score = util.cos_sim(embedding1, embedding2)[0][0].item() print(f"Cosine Similarity Score between two sentences: {cosine_score:.4f}") ``` 此脚本展示了怎样运用Hugging Face提供的Sentence Transformers库快速搭建起一个简易版的文本匹配系统原型。它可以根据输入字符串生成对应的向量表示形式,并据此衡量两者之间的接近程度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值