a的b次方对p取模 a乘b对p取模 快速幂

这篇博客介绍了两种高效的算法:快速幂运算(quick_power)和快速乘法(quick_mul),用于计算大整数的乘方和乘法,并在模运算下防止溢出。算法通过将b转化为二进制表示,然后逐位处理,将时间复杂度降低到大约O(logb)。在给定的示例中,a=4, b=3, p=3,两个函数分别计算了4的3次方和4乘以3的结果,对3取模。

思路:对b用二进制表示,分开操作防止溢出。
对b用二进制表示:
b=b0∗20+b1∗21+b2∗22+...+bn∗2n,bi=0 or 1,i=0,..,nb=b_0*2^0+b_1*2^1+b_2*2^2+...+b_n*2^n,b_i=0 \ or\ 1,i=0,..,nb=b020+b121+b222+...+bn2n,bi=0 or 1,i=0,..,n

ab=ab0∗20+b1∗21+b2∗22+...+bn∗2n=ab0∗20∗ab1∗21∗...∗abn∗2na^b=a^{b_0*2^0+b_1*2^1+b_2*2^2+...+b_n*2^n}=a^{b_0*2^0}*a^{b_1*2^1}*...*a^{b_n*2^n}ab=ab020+b121+b222+...+bn2n=ab020ab121...abn2n
a的b次方对p取模,每次累乘abi∗2ia^{b_i*2^i}abi2i后立即取模,这样不会溢出。

a∗b=a∗(b0∗20+b1∗21+b2∗22+...+bn∗2n)=a∗b0∗20+a∗b1∗21+...+a∗bn∗2na*b=a*(b_0*2^0+b_1*2^1+b_2*2^2+...+b_n*2^n)=a*b_0*2^0+a*b_1*2^1+...+a*b_n*2^nab=a(b020+b121+b222+...+bn2n)=ab020+ab121+...+abn2n
a乘b对p取模,每次累加a∗bi∗2ia*b_i*2^iabi2i后立即取模,这样不会溢出。

时间复杂度,两者都是b拆开后的项数,O(⌊log2b⌋+1)≈O(logb)O(\lfloor{log_2b}\rfloor+1) \approx O(logb)O(log2b+1)O(logb)



a = 4
b = 3
p = 3

def quick_power(a, b, p):
    tmp,sum = 1, 1
    while b:
        tmp = tmp*a%p 
        if b&1:
            sum = sum*tmp%p
        b >>= 1
    return sum
print(quick_power(a, b, p))

def quick_mul(a, b, p):
    sum, tmp = 0, 1
    flag = False
    while b:
        if not flag:
            tmp *= 1
            flag = True
        else:
            tmp = tmp*2%p
        if b&1:
            sum = (sum + a*tmp)%p
        b >>= 1
    return sum
print(quick_mul(a, b, p))
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值