a 的 b 次方模 p_题解

本文介绍了如何使用快速幂算法解决a^bmodp的问题,通过将b的二进制表示和a的幂次递推相结合,将计算复杂度降低到O(log(b)),并提供了C++代码实现。
摘要由CSDN通过智能技术生成

【题解提供者】吴立强

解法一

思路

【快速幂】算法模板题。

面对 a b m o d    p a^b\mod p abmodp 这个结构,并没有什么显而易见的切入点,直接求必然超时 O ( b ) O(b) O(b)

而快速幂算法是先将 b b b 二进制分解(假设 b b b 的二进制表示为 b 29 b 28 b 27 . . . b 2 b 1 b 0 b_{29}b_{28}b_{27}...b_2b_1b_0 b29b28b27...b2b1b0),那么就有:

a b = ∏ i = 0 29 ( b i × a 2 i ) a^b = \prod _{i=0}^{29}(b_i\times a^{2^i}) ab=i=029(bi×a2i)

由于乘法取模可以对乘法各部分先取模,所以有:

a b m o d    p = ( ∏ i = 0 29 ( ( b i × a 2 i ) m o d    p ) ) m o d    p a^b\mod p = (\prod _{i=0}^{29}((b_i\times a^{2^i})\mod p))\mod p abmodp=(i=029((bi×a2i)modp))modp

通过上面的式子,我们将原本的 a b a^b ab 经由 b b b 的二进制拆分转化成了 30 个(因为 2 30 > 1 0 9 2^{30} > 10^9 230>109)子结构的乘积,如果可以较为快速的处理出这 30 个子结构的值,那么原式的值也就求出来了。

b b b 的二进制拆分并不难,而 a a a 则需依次求解出 a 1 , a 2 , a 4 , a 8 . . . a^1,a^2,a^4,a^8... a1,a2,a4,a8...,注意到其每一项都是前一项的平方,通过递推也就可以做到依次求解了。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

int main() {
    ll a, b, p;  cin >> a >> b >> p;
    ll ans = 1;
    /// 二进制拆解 b
    while(b) {
    	/// 当前 b 的最后一位是 1
        if(b & 1) ans = ans * a % p;
        /// 将 a 平方
        a = a * a % p;
        /// 移除 b 的最后一位
        b >>= 1;
    }
    /// 注意,当 b 为 0 时 while 循环内部语句不会执行
    /// 此时 ans 为 1,如果 p 也为 1,那么答案应该是 0
    /// 故输出前一定要将结果再模 p
    cout << ans % p;
    return 0;
}

算法分析

本算法的时间复杂度为 O ( log ⁡ ( b ) ) O(\log(b)) O(log(b))

  • 15
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值