Hadoop学习——Partition分区

要求:将统计的结果按照条件输出到不同文件中(分区)。比如:将统计结果按照收集归属地不同省份输出到不同文件中(分区)

默认Partition分区
默认分区是根据key的hashcode对ReduceTasks个数取模得到的,用户无法控制哪个key存储到哪个分区
可以在驱动类中编写如下进行分区操作

job.setNumReduceTasks(5);//设置几个分区

自定义分区
步骤:

1. 自定义类继承Partitioner ,重写getPartition()方法

public class ProvincePartitioner  extends Partitioner<FlowBean, Text> {

    @Override
    public int getPartition(FlowBean key, Text value, int numPartitions) {

   
        return partiton;
    }
}

2. 在job驱动中,设置自定义Partitioner

 job.setPartitionerClass(ProvincePartitioner.class);//关联自定义分区

3. 自定义Partition后,要根据自定义Partitioner的逻辑设置相应数量的ReduceTask

job.setNumReduceTasks(5);//设置几个分区

分区总结:
1.如果ReduceTask 的数量> getPartition的结果数量,则会多产生几个空个的输出文件
2.如果1<ReduceTask 的数量> getPartition的结果数量,则有一部分分区数据无处安放,会Exception
3. 如果ReduceTask 的数量=-1,则不管MapTask端输出多少个分区文件,最终结果都交给这一个ReduceTask ,最终也就会产生一个结果文件
4.分区号必须从零开始,逐一累加

案例分析
例如:假设自定义分区数量为5 ,则

  1. job.setNumReduceTasks(1); 会正常运行,则不过会产生一个输出文件
  2. job.setNumReduceTasks(2); 会报错
  3. job.setNumReduceTasks(6); 大于5 ,程序会正常运行,会产生空文件

案例实操
1.需求
将统计结果按照手机归属地不同省份输出到不同文件中(分区)
期望输出数据
手机号136、137、138、139开头都分别放到一个独立的4个文件中,其他开头的放到一个文件中。

自定义一个bean

package com.hadwinling.mapreduce.sort;

import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
 * @author :HadwinLing
 * @version 1.0
 * @description: TODO
 * @date 2020/11/12 上午10:55
 */
public class FlowBean implements WritableComparable<FlowBean> {

    private long upFlow; // 上行流量
    private long downFlow; // 下行流量
    private long sumFlow;  // 总流量

    public FlowBean() {
        super();
    }

    public FlowBean(long upFlow, long downFlow) {
        super();

        this.upFlow = upFlow;
        this.downFlow = downFlow;
        sumFlow = upFlow + downFlow;
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    // 比较
    public int compareTo(FlowBean bean) {

        int result;

        // 核心比较条件判断
        if (sumFlow > bean.getSumFlow()) {
            result = -1;
        }else if (sumFlow < bean.getSumFlow()) {
            result = 1;
        }else {
            result = 0;
        }

        return result;
    }

    // 序列化
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeLong(downFlow);
        dataOutput.writeLong(upFlow);
        dataOutput.writeLong(sumFlow);

    }
    // 反序列化
    public void readFields(DataInput dataInput) throws IOException {
         downFlow = dataInput.readLong();
         upFlow = dataInput.readLong();
         sumFlow = dataInput.readLong();
    }
}

编写分区类

package com.hadwinling.mapreduce.sort;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

/**
 * @author :HadwinLing
 * @version 1.0
 * @description: 自定义分区
 * @date 2020/11/12 上午11:09
 */
public class ProvincePartitioner  extends Partitioner<FlowBean, Text> {

    @Override
    public int getPartition(FlowBean key, Text value, int numPartitions) {

        // 按照手机号的前三位分区
        String prePhoneNum = value.toString().substring(0, 3);

        int partiton = 4;

        if ("136".equals(prePhoneNum)) {
            partiton = 0;
        }else if ("137".equals(prePhoneNum)) {
            partiton = 1;
        }else if ("138".equals(prePhoneNum)) {
            partiton = 2;
        }else if ("139".equals(prePhoneNum)) {
            partiton = 3;
        }

        return partiton;
    }
}

编写mapper

package com.hadwinling.mapreduce.sort;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * @author :HadwinLing
 * @version 1.0
 * @description: TODO
 * @date 2020/11/12 上午11:00
 */
public class FlowCountSortMapper extends Mapper<LongWritable, Text,FlowBean,Text> {
    FlowBean  k = new FlowBean();
    Text v = new Text();



    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

        // 1 获取一行
        String line = value.toString();

        // 2 切割
        String[] fields = line.split("\t");

        // 3 封装对象

        String phoneNum = fields[0];

        long downFlow = Long.parseLong(fields[1]);
        long upFlow = Long.parseLong(fields[2]);
        long sumFlow = Long.parseLong(fields[3]);

        k.setDownFlow(downFlow);
        k.setUpFlow(upFlow);
        k.setSumFlow(sumFlow);

        v.set(phoneNum);


        // 4 写出
        context.write(k, v);

    }
}

编写reducer

package com.hadwinling.mapreduce.sort;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * @author :HadwinLing
 * @version 1.0
 * @description: TODO
 * @date 2020/11/12 上午11:07
 */
public class FlowCountSortReducer extends org.apache.hadoop.mapreduce.Reducer<FlowBean, Text, Text, FlowBean> {

    @Override
    protected void reduce(FlowBean key, Iterable<Text> values, Reducer<FlowBean, Text, Text, FlowBean>.Context context)
            throws IOException, InterruptedException {

//		13736230513	2481	24681	27162

        for (Text value : values) {
            context.write(value, key);
        }
    }
}

编写驱动类

package com.hadwinling.mapreduce.sort;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @author :HadwinLing
 * @version 1.0
 * @description: TODO
 * @date 2020/11/12 上午11:09
 */
public class FlowCountSortDriver {
    public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {

        // 输入输出路径需要根据自己电脑上实际的输入输出路径设置
        args = new String[]{"/home/hadoop/MyTmp/mapreduceTest.txt", "/home/hadoop/workplace/Result/mapreduceTestReduce.txt"};

        // 1 获取配置信息,或者job对象实例
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        // 6 指定本程序的jar包所在的本地路径
        job.setJarByClass(FlowCountSortDriver.class);

        // 2 指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(FlowCountSortMapper.class);
        job.setReducerClass(FlowCountSortReducer.class);

        // 3 指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(FlowBean.class);
        job.setMapOutputValueClass(Text.class);

        // 4 指定最终输出的数据的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        // 关联分区
        job.setPartitionerClass(ProvincePartitioner.class);//关联自定义分区
        job.setNumReduceTasks(5);//设置几个分区

        // 5 指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);

    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值