介绍
标签:排序、树状数组、线段树、二分查找、分治法
493. 翻转对
难度 困难
493. 翻转对
https://leetcode-cn.com/problems/reverse-pairs/
题目
给定一个数组 nums ,如果 i < j 且 nums[i] > 2*nums[j] 我们就将 (i, j) 称作一个重要翻转对。
你需要返回给定数组中的重要翻转对的数量。
示例 1:
输入: [1,3,2,3,1]
输出: 2
示例 2:
输入: [2,4,3,5,1]
输出: 3
注意:
- 给定数组的长度不会超过50000。
- 输入数组中的所有数字都在32位整数的表示范围内。
解题思路
大佬写的题解太好了
看官方那个:这啥,让我来仔细瞅瞅
看笨猪爆破组大佬的题解:原来是这样,懂了懂了
心路历程
最开始的想法是直接双重循环,时间复杂度
O(n^2)
,很明显慢多了
然后一看相关标签,排序、分治,好像想起了些什么(什么?树状数组和线段树?在学了在学了,别骂了)首先从分治的角度思考,即将数组分为两个部分
令 i 在前一个数组里面,j 在后一个数组
在这种情况下,只要两个数组都是分别排序好的借用大佬的图展示下:
那么可以直接通过双指针,分别遍历两个数组
从而获取翻转对的数量
最后再将两个合并,顺便排序
最后再返回在当前层时全部的翻转对
分治法的效率展示
都不怎么快
代码
class Solution {
private int count;
public int reversePairs(int[] nums) {
if (nums == null || nums.length < 2) {
return 0;
}
count = 0;
mergeSort(nums, 0, nums.length - 1);
return count;
}
//分治的方法
private void mergeSort(int[] nums, int start, int end) {
//出口
if (start == end) {
return 0;
}
int mid = start + (end - start) / 2;
//二分递归
mergeSort(nums, start, mid);
mergeSort(nums, mid + 1, end);
//关键的部分
//双指针获取翻转对的数量
int i = start;
int j = mid + 1;
while (i <= mid && j <= end) {
//条件成立,当前的i一直到mid都可以与当前的j构成翻转对
//用long是因为数据顶到了int的顶
if ((long) nums[i] > 2 * (long) nums[j]) {
count += mid - i + 1;
j++;
}
//条件不在满足了,i++,看下一个i是否再次满足
else {
i++;
}
}
// 获取完之后合并,新建一个数组转存
int[] tempArr = new int[end - start + 1];
i = start;
j = mid + 1;
int idx = 0;
while (i <= mid && j <= end) {
tempArr[idx++] = nums[i] < nums[j] ? nums[i++] : nums[j++];
}
while (i <= mid) {
tempArr[idx++] = nums[i++];
}
while (j <= end) {
tempArr[idx++] = nums[j++];
}
for (i = 0, j = start; j <= end; i++, j++) {
nums[j] = tempArr[i];
}
}
}