《概率论与数理统计》学习笔记

重温《概率论与数理统计》进行查漏补缺,并对其中的概念公式等内容进行总结,以便日后回顾。

目录

第一章 概率论的基本概念

第二章 随机变量及其分布

第三章  多维随机变量及其分布

第四章  随机变量的数字特征

第五章  大数定律及中心极限定理

第六章  样本及抽样分布

第七章  参数估计

第八章  假设检验​​​​​​​


第一章 概率论的基本概念

1.随机试验

随机试验——具有下述三个特点的试验:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现。

2.样本空间、随机事件

样本空间——随机试验的所有可能结果组成的集合。

样本点——样本空间的元素。

随机事件——随机试验的样本空间的子集。

事件间的关系:

事件B包含事件A:事件A发生必导致事件A=B发生时。若,则称事件A与事件相等。

事件A与事件B的和事件:当且仅 当A,B中至少有一个发生时。

事件A与事件B的积事件:当且仅当A,B同时发生时。

事件且称为事件A与事件B的差事件:当且仅当A发生、B不发生时。

事件A与B是互不相容的或互斥的:事件 A与事件B不能同时发生。

事件A与事件B互为逆事件.又称对立事件,事件A、B中必有一个发生,且仅有一个发生。

3.频率与概率

在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数nA称为事件A发生的频数。比值n/nA称为事件A发生的频率

设E是随机试验,S是它的样本空间。对于E的每一事件人赋予一 个实数,记为P(A),称为事件A的概率。如果集合函数P(・)满足下列条件:非负性,规范性,可列可加性。

4.等可能概型

    特点:

  1. 试验的样本空间只包含有限个元素;
  2. 试验中每个基本事件发生的可能性相冋。

5.条件概率

设A,B是两个事件,且P(A)>0,称

P(B|A)=\frac{P(AB)}{P(A)}

为在事件A发生的条件下事件B发生的条件概率

全概率公式:

设试验E的样本空间为S,A为E的事件,B1,B2,…Bn为S的一个划分,且P(Bi)>0(i=1,2,…n),则

             贝叶斯公式:

设试验E的样本空间为S,A为E的事件,B1,B2,…Bn为S的一个划分,且P(A)>0(i=1,2,…n),P(Bi)>0(i=1,2,…n),则

6.独立性

设A,B是两个事件,如果满足等式

则称事件A,B相互独立。

第二章 随机变量及其分布

1.随机变量

2.离散型随机变量及其分布

三种重要离散型随机变量

            (0-1)分布

设随机变量X只可能取0与1两个值,它的分布律是

            则称X服从以为参数的(0 — 1)分布或两点分布.

(0-1)分布的分布律也可写成

伯努利试验、二项分布

设试验E只有两个可能结果:A及\bar{A},则称E为伯努利试验. 设P(A)=p(0<p<1),此时P()=1-p.将E独立重复地进行n次,则称这 一串重复的独立试验为n重伯努利试验。

            泊松分布

设随机变量X所有可能取的值为0,1,2,…,而取各个值的概率为

其中\lambda >0是常数,则称X服从参数为人的泊松分布,记为X\sim \pi (\lambda )

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值