重温《概率论与数理统计》进行查漏补缺,并对其中的概念公式等内容进行总结,以便日后回顾。
目录
第八章 假设检验
第一章 概率论的基本概念
1.随机试验
随机试验——具有下述三个特点的试验:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现。
2.样本空间、随机事件
样本空间——随机试验的所有可能结果组成的集合。
样本点——样本空间的元素。
随机事件——随机试验的样本空间的子集。
事件间的关系:
事件B包含事件A:事件A发生必导致事件发生时。若,则称事件A与事件相等。
事件A与事件B的和事件:当且仅 当A,B中至少有一个发生时。
事件A与事件B的积事件:当且仅当A,B同时发生时。
事件且称为事件A与事件B的差事件:当且仅当A发生、B不发生时。
事件A与B是互不相容的或互斥的:事件 A与事件B不能同时发生。
事件A与事件B互为逆事件.又称对立事件,事件A、B中必有一个发生,且仅有一个发生。
3.频率与概率
在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数nA称为事件A发生的频数。比值n/nA称为事件A发生的频率。
设E是随机试验,S是它的样本空间。对于E的每一事件人赋予一 个实数,记为P(A),称为事件A的概率。如果集合函数P(・)满足下列条件:非负性,规范性,可列可加性。
4.等可能概型
特点:
- 试验的样本空间只包含有限个元素;
- 试验中每个基本事件发生的可能性相冋。
5.条件概率
设A,B是两个事件,且P(A)>0,称
为在事件A发生的条件下事件B发生的条件概率。
全概率公式:
设试验E的样本空间为S,A为E的事件,B1,B2,…Bn为S的一个划分,且P(Bi)>0(i=1,2,…n),则
贝叶斯公式:
设试验E的样本空间为S,A为E的事件,B1,B2,…Bn为S的一个划分,且P(A)>0(i=1,2,…n),P(Bi)>0(i=1,2,…n),则
6.独立性
设A,B是两个事件,如果满足等式
则称事件A,B相互独立。
第二章 随机变量及其分布
1.随机变量
2.离散型随机变量及其分布
三种重要离散型随机变量
(0-1)分布
设随机变量X只可能取0与1两个值,它的分布律是
则称X服从以为参数的(0 — 1)分布或两点分布.
(0-1)分布的分布律也可写成
伯努利试验、二项分布
设试验E只有两个可能结果:A及,则称E为伯努利试验. 设P(A)=p(0<p<1),此时P()=1-p.将E独立重复地进行n次,则称这 一串重复的独立试验为n重伯努利试验。
泊松分布
设随机变量X所有可能取的值为0,1,2,…,而取各个值的概率为
其中是常数,则称X服从参数为人的泊松分布,记为