【训练日记】20170402 约定
题意:给定平面上
n
个点的坐标。在每个时间单位里,每个点可以向上下左右四个方向中的一个移动一单位长度,但不可以不移动。询问在
题解之一(雾):打表找规律。提示:组合数、乘积。
题解:因为只能向四个方向移动,所以每一次移动过程中,横纵坐标的变化是会相互影响的(横坐标变了纵坐标就不能改变,横坐标不变纵坐标必须改变,反之亦然)。如果两个坐标的变化不能彼此分离处理,在如此大的数据范围下难以找到能快速找出答案的算法。
考虑旋转坐标系。令点的初始坐标为 (x,y) ,现记录为 (x+y,x−y) 。观察发现,原先坐标的四种变化,对应了新记录方法中横纵坐标 [+1,−1] 的四种组合。横纵坐标的改变不再相互影响,可以分离成两个一维问题进行处理。
对于两个一维问题,分别枚举终止坐标,用组合数算出方案数,相乘即为最终答案。时间复杂度 O(nm) 。