【Python】 字符串格式 如上所示,如果用 {} 包围索引并将其嵌入到字符串中,则该字符串将与 format 方法的参数索引一起输出。与之前一样,{0:.1f} 中的 0 指定参数的索引。对于数值,可以指定要显示的小数位数,如下所示。该表示法是通过在要定义的字符串的开头添加 f 或 F 来定义的。到目前为止,可能已经在代码中多次看到字符串连接,但再次看一下。输出字符串的场景有很多,所以来了解一下生成字符串的各种方式。如上所示,可以使用或不使用 + 运算符来连接字符串。因此,如果更改如下指定的索引,将得到相应的输出结果。
可以加速 Pandas(即使在 CPU 环境中)而无需编码...... FireDucks 根据官网介绍,并不是所有的pandas方法都更快,但是兼容的方法数量会逐渐增加(FireDucks不支持的方法会在内部转换为常规的pandas方法)。(既然被调用了,就不’这并不意味着它不能使用,它只是似乎没有加速。另一方面,对于“显式导入”,请在导入语句中显式指定fireducks。会尝试测量groupby()方法的效果,但由于数据量很小,将循环它10,000次并测量它。显然,一个库已经发布,可以在不改变现有代码的情况下加速 Pandas。如果它是免费且易于使用且无需更改代码的,我认为没有理由不使用它。
【Python】从文本中提取数字 在正整数、负整数、小数和欧洲小数这四种情况下,提取文本中包含的数字的正则表达式如是:pattern = r'[^+\-\d]*([+-]?\d+([.,]\d+)?).*'
【Pandas】 sql查询 在进行数据分析时,Pandas 是一个非常流行的 Python 数据分析库。 然而,如果习惯用 SQL 从数据库检索和操作数据,Pandas 的语法有点望而生畏。 这时 pandasql 可派上用场。 该库可直接在 Pandas DataFrame 上运行 SQL 查询。
比较 pandas 和 Polars 的处理速度和易用性 Polars在速度方面比pandas有优势,可以看作是能够解决pandas的弱点。这次,想测量一下 pandas 和 Polars 之间的处理速度,并验证哪一个更好,包括易用性。最后总结以下三点: 执行速度 library的便利 可以用polar取代pandas吗?
【Python】函数的定义和函数的处理 定义函数允许您定义一次并重复使用它,只要您想重复使用同一过程即可。Def用于定义一个函数。函数名旁边写的 (thing, basket) 是参数。至于参数,我们将在以后的文章中详细讨论,但它们将是传递给函数的变量。通过改变这个参数的值,即便使用相同的逻辑,结果也会改变。
【Python】int(a/b) 和 a//b 之间的巨大区别 从今以后,请尽可能避免 int(a/b) ,并使用 a//b 代替。这个纯粹的问题点出 int(a/b) 和 a//b 之间的区别。因为大于 53 位的数字只是近似值,所以无法产生正确的结果。因为诧异于 WA 和 AC 的变化,所以研究了其中的差异。通过“a/b 返回 float,a//b 返回 int”,事实证明,对于float来说,数字只能到第53位。使人诧异的是整数(int)的精度没有上限……int(a/b) 和 a//b 之间的区别。而事实上,这次处理的数字超过了53位。区别在于是否发生溢出。
活用异常处理(try-except) 简要介绍Python的异常处理(try-except)。 - except 异常名称:捕获特定异常 - except 异常名称作为变量名称:将异常对象存储在变量中 - except可以设置多个例外。 - 如果 except 中没有指定异常名称,则捕获所有异常。