数学学习笔记1——二次函数中的数形结合

二次函数中的数形结合

一、解一元二次不等式

基本方法:配方。

x 2 − 4 x + 3 < 0 → ( x − 2 ) 2 < 1 → ∣ x − 2 ∣ < 1 → 1 < x < 3 x^2-4x+3<0\to(x-2)^2<1\to\lvert x-2\rvert<1\to1<x<3 x24x+3<0(x2)2<1x2<11<x<3

数形结合: y = x 2 − 4 x + 3 < 0 → y = ( x − 1 ) ( x − 3 ) < 0 → 1 < x < 3 y=x^2-4x+3<0\to y=(x-1)(x-3)<0\to1<x<3 y=x24x+3<0y=(x1)(x3)<01<x<3
在这里插入图片描述
练习:

  1. 2 x 2 − x − 1 ≥ 0 → ( 2 x + 1 ) ( x − 1 ) ≥ 0 → x ≤ − 1 2 or ⁡ x ≥ 1 2x^2-x-1\ge0\to(2x+1)(x-1)\ge0\to x\le-\cfrac{1}{2}\operatorname{or}x\ge1 2x2x10(2x+1)(x1)0x21orx1
  2. − x 2 + x + 1 ≥ 0 → 1 − 5 2 ≤ x ≤ 1 + 5 2 -x^2+x+1\ge0\to\cfrac{1-\sqrt5}{2}\le x\le\cfrac{1+\sqrt5}{2} x2+x+10215 x21+5
  3. 3 x 2 − x + 1 < 0   Δ = 1 − 12 < 0 → 3x^2-x+1<0\ \Delta=1-12<0\to 3x2x+1<0 Δ=112<0 无解

二、数形结合判断根的范围 重点

前置知识

区间根定理:若连续1函数 f ( x ) f(x) f(x) 再区间 [ a , b ] [a,b] [a,b] 的两端函数值异号,则 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 内必有根。

1:不包括反比例函数等非连续函数。

三个事:

  1. 特殊值
  2. 对称轴
  3. 判别式

练习:

  1. f ( x ) = x 2 + x + a = 0 f(x)=x^2+x+a=0 f(x)=x2+x+a=0 的两根中一个大于 3 3 3,一个小于 3 3 3
    f ( 3 ) < 0 f(3)<0 f(3)<0 足矣。
  2. f ( x ) = x 2 + x + a = 0 f(x)=x^2+x+a=0 f(x)=x2+x+a=0 的两根都在 ( − 1 , 3 ) (-1,3) (1,3) 内。
  • f ( − 1 ) > 0 f(-1)>0 f(1)>0
  • f ( 3 ) > 0 f(3)>0 f(3)>0
  • − 1 < -1< 1< < 3 <3 <3
  • Δ ≥ 0 \Delta\ge0 Δ0

三、例题

解不等式 2 x 2 − 3 x − 2 > 0 2x^2-3x-2>0 2x23x2>0
2 x 2 − 3 x − 2 = ( 2 x + 1 ) ( x − 2 ) > 0 → x < − 1 2 or ⁡ x > 2 2x^2-3x-2=(2x+1)(x-2)>0\to x<-\cfrac{1}{2} \operatorname{or} x>2 2x23x2=(2x+1)(x2)>0x<21orx>2

解不等式 − x 2 − 2 x + 3 ≥ 0 -x^2-2x+3\ge0 x22x+30
− x 2 − 2 x + 3 = ( − x + 1 ) ( x + 3 ) ≥ 0 → − 3 ≤ x ≤ 1 -x^2-2x+3=(-x+1)(x+3)\ge0\to-3\le x\le1 x22x+3=(x+1)(x+3)03x1

解不等式 3 x 2 − x + 2 > 0 3x^2-x+2>0 3x2x+2>0
Δ = − 23 < 0 → x \Delta=-23<0\to x Δ=23<0x 为任意数

已知实数 x , y x,y x,y 满足 x 2 + y 2 + 2 x − 3 = 0 x^2+y^2+2x-3=0 x2+y2+2x3=0,则 2 x 2 + y 2 2x^2+y^2 2x2+y2 的最大值为________.
分析:消元。利用平方数求范围。
∵ y 2 = 3 − x 2 − 2 x ≥ 0 \because y^2=3-x^2-2x\ge0 y2=3x22x0
∴ − 3 ≤ x ≤ 1 \therefore-3\le x\le1 3x1
∴ 2 x 2 + y 2 = 2 x 2 + 3 − x 2 − 2 x = x 2 − 2 x + 3 = ( x − 1 ) 2 + 2 \therefore2x^2+y^2=2x^2+3-x^2-2x=x^2-2x+3=(x-1)^2+2 2x2+y2=2x2+3x22x=x22x+3=(x1)2+2
∴ \therefore x = − 3 x=-3 x=3 时, max ⁡ = 18 \max=18 max=18

若关于 x x x 的一元二次方程 x 2 + ( m − 5 ) x + m − 2 = 0 x^2+(m-5)x+m-2=0 x2+(m5)x+m2=0 有实根,且一根大于 1 1 1,另一根小于 2 2 2,则实数 m m m 的取值范围为________________.
分析:数形结合后可得 f ( 2 ) < 0 f(2)<0 f(2)<0,即可代入原函数求出 m m m 的取值范围。

  • f ( 2 ) < 0 → 4 + 2 ( m − 5 ) + m − 2 = 3 m − 8 < 0 → m < 8 3 f(2)<0\to4+2(m-5)+m-2=3m-8<0\to m<\cfrac{8}{3} f(2)<04+2(m5)+m2=3m8<0m<38

∴ m < 8 3 \therefore m<\cfrac{8}{3} m<38

若关于 x x x 的一元二次方程 x 2 − ( 2 − a ) x + 5 − a = 0 x^2-(2-a)x+5-a=0 x2(2a)x+5a=0 有实根,且一根在区间 ( 0 , 2 ) (0,2) (0,2) 内,另一根在区间 4 , 6 4,6 4,6 内,则实数 a a a 的取值范围为________________.
分析:数形结合后可得 f ( 0 ) > 0 , f ( 2 ) < 0 , f ( 4 ) < 0 , f ( 6 ) > 0 f(0)>0,f(2)<0,f(4)<0,f(6)>0 f(0)>0,f(2)<0,f(4)<0,f(6)>0,即可代入原函数求出 a a a 的取值范围。

  • f ( 0 ) > 0 → 5 − a > 0 → a < 5 f(0)>0\to5-a>0\to a<5 f(0)>05a>0a<5
  • f ( 2 ) < 0 → 4 − 2 ( 2 − a ) + 5 − a = a + 5 < 0 → a < − 5 f(2)<0\to4-2(2-a)+5-a=a+5<0\to a<-5 f(2)<042(2a)+5a=a+5<0a<5
  • f ( 4 ) < 0 → 16 − 4 ( 2 − a ) + 5 − a = 3 a + 13 < 0 → a < − 13 3 f(4)<0\to16-4(2-a)+5-a=3a+13<0\to a<-\cfrac{13}{3} f(4)<0164(2a)+5a=3a+13<0a<313
  • f ( 6 ) > 0 → 36 − 6 ( 2 − a ) + 5 − a = 5 a + 29 > 0 → a > − 29 5 f(6)>0\to36-6(2-a)+5-a=5a+29>0\to a>-\cfrac{29}{5} f(6)>0366(2a)+5a=5a+29>0a>529

∴ − 29 5 < a < − 5 \therefore-\cfrac{29}{5}<a<-5 529<a<5

若关于 x x x 的一元二次方程 a x 2 − 2 x + 1 = 0 ( a > 0 ) ax^2-2x+1=0(a>0) ax22x+1=0(a>0) 有实根,且一根在区间 ( 1 , 3 ) (1,3) (1,3) 内,另一根小于 1 1 1,则实数 a a a 的取值范围为________________.
分析:数形结合后可得 f ( 1 ) < 0 , f ( 3 ) > 0 f(1)<0,f(3)>0 f(1)<0,f(3)>0,即可代入原函数求出 a a a 的取值范围。

  • f ( 1 ) < 0 → a − 1 < 0 → a < 1 f(1)<0\to a-1<0\to a<1 f(1)<0a1<0a<1
  • f ( 3 ) > 0 → 9 a − 5 > 0 → a > 5 9 f(3)>0\to 9a-5>0\to a>\cfrac{5}{9} f(3)>09a5>0a>95

∴ 5 9 < a < 1 \therefore\cfrac{5}{9}<a<1 95<a<1

若关于 x x x 的一元二次方程 x 2 + ( m − 5 ) x + m − 2 = 0 x^2+(m-5)x+m-2=0 x2+(m5)x+m2=0 有实根,且两根都小于 − 2 -2 2,则实数 m m m 的取值范围为________________.
分析:数形结合后可得 f ( − 2 ) > 0 , f(-2)>0, f(2)>0, < − 2 , Δ ≥ 0 <-2,\Delta\ge0 <2,Δ0,即可代入原函数求出 m m m 的取值范围。

  • f ( − 2 ) > 0 → 4 − 2 ( m − 5 ) + m − 2 = 12 − m > 0 → m < 12 f(-2)>0\to4-2(m-5)+m-2=12-m>0\to m<12 f(2)>042(m5)+m2=12m>0m<12
  • < − 2 → − m − 5 2 < − 2 → m > 9 <-2\to-\cfrac{m-5}{2}<-2\to m>9 <22m5<2m>9
  • Δ ≥ 0 → ( m − 5 ) 2 − 4 ( m − 2 ) = m 2 − 14 m + 33 ≥ 0 → m ≤ 3 \Delta\ge0\to(m-5)^2-4(m-2)=m^2-14m+33\ge0\to m\le3 Δ0(m5)24(m2)=m214m+330m3 m ≥ 11 m\ge11 m11

∴ 11 ≤ m < 12 \therefore11\le m<12 11m<12

若关于 x x x 的一元二次方程 4 x 2 − 2 m x + n = 0 4x^2-2mx+n=0 4x22mx+n=0 有实根,且两根都在区间 ( 0 , 1 ) (0,1) (0,1) 内,已知 m , n m,n m,n 均为正整数,则 m 2 + n = m^2+n= m2+n= ________________.
分析:数形结合后可得 f ( 0 ) > 0 , f ( 1 ) > 0 , 0 < f(0)>0,f(1)>0,0< f(0)>0,f(1)>0,0< < 1 , Δ ≥ 0 <1,\Delta\ge0 <1,Δ0,代入原函数可求出 m , n m,n m,n 的取值范围,最后分类讨论即可求出答案。

  • f ( 0 ) > 0 → n > 0 f(0)>0\to n>0 f(0)>0n>0 无用
  • f ( 1 ) > 0 → 4 − 2 m + n > 0 → 4 + n > 2 m f(1)>0\to4-2m+n>0\to4+n>2m f(1)>042m+n>04+n>2m
  • 0 < 0< 0< < 1 → 0 < 2 m 8 < 1 → 0 < m < 4 <1\to0<\cfrac{2m}{8}<1\to0<m<4 <10<82m<10<m<4
  • Δ ≥ 0 → 4 m 2 − 16 n ≥ 0 → m 2 ≥ 4 n \Delta\ge0\to4m^2-16n\ge0\to m^2\ge4n Δ04m216n0m24n

分类讨论:

m m m 1 1 1 2 2 2 3 3 3
n n n × \times × 1 1 1 × \times ×

m 2 + n = 5 m^2+n=5 m2+n=5.

若关于 x x x 的一元二次方程 m x 2 − ( 2 m + 1 ) x + 5 m + 1 = 0 mx^2-(2m + 1)x + 5m + 1 = 0 mx2(2m+1)x+5m+1=0 有实根,且在区间 [ 3 2 , 5 ] [\cfrac{3}{2},5] [23,5] 内恰有一根,求实数 m m m 的取值范围。
分析:因为不知道 m m m 的正负,所以二次函数的开口朝向就不知道了,所以考虑分类讨论。

  1. f ( 3 2 ) > 0 f(\cfrac{3}{2})>0 f(23)>0 f ( 5 ) < 0 f(5)<0 f(5)<0
  • 9 4 − ( 3 m + 3 2 ) + 5 m + 1 > 0 \cfrac{9}{4}-(3m+\cfrac{3}{2})+5m+1>0 49(3m+23)+5m+1>0
  • 25 m − ( 10 m + 5 ) + 5 m + 1 < 0 25m-(10m+5)+5m+1<0 25m(10m+5)+5m+1<0
    ∴ m > 2 17 \therefore m>\cfrac{2}{17} m>172 m < 1 5 m<\cfrac{1}{5} m<51
  1. f ( 3 2 ) < 0 f(\cfrac{3}{2})<0 f(23)<0 f ( 5 ) > 0 f(5)>0 f(5)>0
  • 9 4 m − ( 3 m + 3 2 ) + 5 m + 1 < 0 \cfrac{9}{4}m-(3m+\cfrac{3}{2})+5m+1<0 49m(3m+23)+5m+1<0
  • 25 m − ( 10 m + 5 ) + 5 m + 1 > 0 25m-(10m+5)+5m+1>0 25m(10m+5)+5m+1>0
    ∴ m < 2 17 \therefore m<\cfrac{2}{17} m<172 m > 1 5 m>\cfrac{1}{5} m>51(舍)
  1. f ( 3 2 ) = 0 f(\cfrac{3}{2})=0 f(23)=0
  • 9 4 m − ( 3 m + 3 2 ) + 5 m + 1 = 0 \cfrac{9}{4}m-(3m+\cfrac{3}{2})+5m+1=0 49m(3m+23)+5m+1=0
    ∴ m = 2 17 \therefore m=\cfrac{2}{17} m=172
  1. f ( 5 ) = 0 f(5)=0 f(5)=0
  • 25 m − ( 10 m + 5 ) + 5 m + 1 = 0 25m-(10m+5)+5m+1=0 25m(10m+5)+5m+1=0
    ∴ m − 1 5 \therefore m-\cfrac{1}{5} m51
    ∴ 1 5 x 2 − 7 5 x + 2 = 0 \therefore\cfrac{1}{5}x^2-\cfrac{7}{5}x+2=0 51x257x+2=0
    ∴ ( x − 2 ) ( x − 5 ) = 0 \therefore(x-2)(x-5)=0 (x2)(x5)=0
    ∴ x = 2 \therefore x=2 x=2 5 5 5(舍)

综上, 2 17 ≤ x < 1 5 \cfrac{2}{17}\le x<\cfrac{1}{5} 172x<51

已知关于 x x x 的方程 4 x 2 − 4 x + m = 0 4x^2 - 4x + m = 0 4x24x+m=0 在区间 [ − 1 , 1 ] [-1,1] [1,1] 内至少有一根,求 m m m 的取值范围。
分析:分类讨论即可。

  1. 两根在 [ − 1 , 1 ] [-1,1] [1,1]
  • f ( − 1 ) ≥ 0 → m ≥ − 8 f(-1)\ge0\to m\ge-8 f(1)0m8
  • f ( 1 ) ≥ 0 → m ≥ 0 f(1)\ge0\to m\ge0 f(1)0m0
  • − 1 ≤ -1\le 1 ≤ 1 → \le1\to 1 无用
  • Δ ≥ 0 → m ≤ 1 \Delta\ge0\to m\le1 Δ0m1
    ∴ 0 ≤ m ≤ 1 \therefore0\le m\le1 0m1
  1. 一根在 ( − 1 , 1 ) (-1,1) (1,1)
    f ( − 1 ) < 0 , f ( 1 ) > 0 f(-1)<0,f(1)>0 f(1)<0,f(1)>0 f ( − 1 ) > 0 , f ( 1 ) < 0 f(-1)>0,f(1)<0 f(1)>0,f(1)<0
    m < − 8 , m > 0 m<-8,m>0 m<8,m>0(舍) m > − 8 , m < 0 m>-8,m<0 m>8,m<0
    ∴ − 8 < m < 0 \therefore-8<m<0 8<m<0
  2. f ( − 1 ) = 0 f(-1)=0 f(1)=0
    m=-8
  3. f ( 1 ) = 0 f(1)=0 f(1)=0
    m=0

综上, − 8 ≤ m ≤ 1 -8\le m\le1 8m1

  • 32
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值