概述
我们知道storm一个很重要的特性是它能够保证你发出的每条消息都会被完整处理, 完整处理的意思是指:
一个tuple被完全处理的意思是: 这个tuple以及由这个tuple所导致的所有的tuple都被成功处理。而一个tuple会被认为处理失败了如果这个消息在timeout所指定的时间内没有成功处理。
也就是说对于任何一个spout-tuple以及它的所有子孙到底处理成功失败与否我们都会得到通知。关于如果做到这一点的原理,可以看看Twitter Storm如何保证消息不丢失这篇文章。从那篇文章里面我们可以知道,storm里面有个专门的acker来跟踪所有tuple的完成情况。这篇文章就来讨论acker的详细工作流程。
源代码列表
这篇文章涉及到的源代码主要包括:
算法简介
acker对于tuple的跟踪算法是storm的主要突破之一, 这个算法使得对于任意大的一个tuple树, 它只需要恒定的20字节就可以进行跟踪了。原理很简单:acker对于每个spout-tuple保存一个ack-val的校验值,它的初始值是0, 然后每发射一个tuple/ack一个tuple,那么tuple的id都要跟这个校验值异或一下,并且把得到的值更新为ack-val的新值。那么假设每个发射出去的tuple都被ack了, 那么最后ack-val一定是0(因为一个数字跟自己异或得到的值是0)。
进入正题
那么下面我们从源代码层面来看看哪些组件在哪些时候会给acker发送什么样的消息来共同完成这个算法的。acker对消息进行处理的主要是下面这块代码:
- (let [id (.getValue tuple 0)
- ^TimeCacheMap pending @pending
- curr (.get pending id)
- curr (condp = (.getSourceStreamId tuple)
- ACKER-INIT-STREAM-ID (-> curr
- (update-ack id)
- (assoc :spout-task (.getValue tuple 1)))
- ACKER-ACK-STREAM-ID (update-ack
- curr (.getValue tuple 1))
- ACKER-FAIL-STREAM-ID (assoc curr :failed true))]
- ...)
Spout创建一个新的tuple的时候给acker发送消息
消息格式(看上面代码的第1行和第7行对于tuple.getValue()
的调用)助
- (spout-tuple-id, task-id)
消息的streamId是__ack_init(ACKER-INIT-STREAM-ID)
这是告诉acker, 一个新的spout-tuple出来了, 你跟踪一下,它是由id为task-id的task创建的(这个task-id在后面会用来通知这个task:你的tuple处理成功了/失败了)。处理完这个消息之后, acker会在它的pending这个map(类型为TimeCacheMap)里面添加这样一条记录:
- {spout-tuple-id {:spout-tasktask-id :valack-val)}
这就是acker对spout-tuple进行跟踪的核心数据结构, 对于每个spout-tuple所产生的tuple树的跟踪都只需要保存上面这条记录。acker后面会检查:val什么时候变成0,变成0, 说明这个spout-tuple产生的tuple都处理完成了。
Bolt发射一个新tuple的时候会给acker发送消息么?
任何一个bolt在发射一个新的tuple的时候,是不会直接通知acker的,如果这样做的话那么每发射一个消息会有三条消息了:
- Bolt创建这个tuple的时候,把它发给下一个bolt的消息
-
Bolt创建这个tuple的时候,发送给acker的消息 - ack tuple的时候发送的ack消息
事实上storm里面只有第一条和第三条消息,它把第二条消息省掉了, 怎么做到的呢?storm这点做得挺巧妙的,bolt在发射一个新的bolt的时候会把这个新tuple跟它的父tuple的关系保存起来。然后在ack每个tuple的时候,storm会把要ack的tuple的id, 以及这个tuple新创建的所有的tuple的id的异或值发送给acker。这样就给每个tuple省掉了一个消息(具体看下一节)。
Tuple被ack的时候给acker发送消息
每个tuple在被ack的时候,会给acker发送一个消息,消息格式是:助
- (spout-tuple-id, tmp-ack-val)
消息的streamId是__ack_ack(ACKER-ACK-STREAM-ID)
注意,这里的tmp-ack-val是要ack的tuple的id与由它新创建的所有的tuple的id异或的结果:
- tuple-id ^ (child-tuple-id1 ^ child-tuple-id2 ... )
我们可以从task.clj里面的send-ack方法看出这一点:
- (defn- send-ack [^TopologyContext topology-context
- ^Tuple input-tuple
- ^List generated-ids send-fn]
- (let [ack-val (bit-xor-vals generated-ids)]
- (doseq [
- [anchor id] (.. input-tuple
- getMessageId
- getAnchorsToIds)]
- (send-fn (Tuple. topology-context
- [anchor (bit-xor ack-val id)]
- (.getThisTaskId topology-context)
- ACKER-ACK-STREAM-ID))
- )))
这里面的generated-ids
参数就是这个input-tuple的所有子tuple的id, 从代码可以看出storm会给这个tuple的每一个spout-tuple发送一个ack消息。
为什么说这里的generated-ids
是input-tuple的子tuple呢? 这个send-ack是被OutputCollectorImpl里面的ack方法调用的:
- public void ack(Tuple input) {
- List generated = getExistingOutput(input);
- // don't just do this directly in case
- // there was no output
- _pendingAcks.remove(input);
- _collector.ack(input, generated);
- }
generated是由
getExistingOutput(input)
方法计算出来的, 我们再来看看这个方法的定义:
- private List getExistingOutput(Tuple anchor) {
- if(_pendingAcks.containsKey(anchor)) {
- return _pendingAcks.get(anchor);
- } else {
- List ret = new ArrayList();
- _pendingAcks.put(anchor, ret);
- return ret;
- }
- }
_pendingAcks
里面存的是什么东西呢?
- private Tuple anchorTuple(Collection< Tuple > anchors,
- String streamId,
- List< Object > tuple) {
- // The simple algorithm in this function is the key
- // to Storm. It is what enables Storm to guarantee
- // message processing.
- // 这个map存的东西是 spout-tuple-id到ack-val的映射
- Map< Long, Long > anchorsToIds
- = new HashMap<Long, Long>();
- // anchors 其实就是它的所有父亲:spout-tuple
- if(anchors!=null) {
- for(Tuple anchor: anchors) {
- long newId = MessageId.generateId();
- // 告诉每一个父亲,你们又多了一个儿子了。
- getExistingOutput(anchor).add(newId);
- for(long root: anchor.getMessageId()
- .getAnchorsToIds().keySet()) {
- Long curr = anchorsToIds.get(root);
- if(curr == null) curr = 0L;
- // 更新spout-tuple-id的ack-val
- anchorsToIds.put(root, curr ^ newId);
- }
- }
- }
- return new Tuple(_context, tuple,
- _context.getThisTaskId(),
- streamId,
- MessageId.makeId(anchorsToIds));
- }
从上面代码里面的红色部分我们可以看出, _pendingAcks
里面维护的其实就是tuple到自己儿子的对应关系。
Tuple处理失败的时候会给acker发送失败消息
acker会忽略这种消息的消息内容(消息的streamId为ACKER-FAIL-STREAM-ID
), 直接将对应的spout-tuple标记为失败(最上面代码第9行)
最后Acker发消息通知spout-tuple对应的Worker
最后, acker会根据上面这些消息的处理结果来通知这个spout-tuple对应的task:
- (when (and curr
- (:spout-task curr))
- (cond (= 0 (:val curr))
- ;; ack-val == 0 说明这个tuple的所有子孙都
- ;; 处理成功了(都发送ack消息了)
- ;; 那么发送成功消息通知创建这个spout-tuple的task.
- (do
- (.remove pending id)
- (acker-emit-direct @output-collector
- (:spout-task curr)
- ACKER-ACK-STREAM-ID
- [id]
- ))
- ;; 如果这个spout-tuple处理失败了
- ;; 发送失败消息给创建这个spout-tuple的task
- (:failed curr)
- (do
- (.remove pending id)
- (acker-emit-direct @output-collector
- (:spout-task curr)
- ACKER-FAIL-STREAM-ID
- [id]
- ))
- ))