【重点!!!】【归并排序】315. 计算右侧小于当前元素的个数

题目
归并排序的另一个经典题目:数组中的逆序对

法1:归并排序—构造索引类

这种写法更容易理解。

class Solution {
    List<Integer> ans = new ArrayList<>();
    int[] count;     // 记录题目中所求的count[i]
    Pair[] tmp;      // 临时数组, 存储一次归并过程中排序好的【两段有序的元素】

    public List<Integer> countSmaller(int[] nums) {
        int n = nums.length;
        Pair[] pairArray = new Pair[n];
        count = new int[n];
        tmp = new Pair[n];
        for (int i = 0; i < n; i++) {
            pairArray[i] = new Pair(nums[i], i);
        }
        mergeSort(pairArray, 0, n - 1);
        for (int i = 0; i < n; i++) {
            ans.add(count[i]);
        }
        return ans;
    }

    private void mergeSort(Pair[] pairArray, int start, int end) {
        if (start < end) {
            int mid = start + (end - start) / 2;
            mergeSort(pairArray, start, mid);  
            mergeSort(pairArray, mid + 1, end); 
            merge(pairArray, start, mid, end);  // 再将两个有序数组合并,只不过这里要承接统计count[i]的功能
        }
    }

    // 注意: 降序merge!!!
    private void merge(Pair[] pairArray, int start, int mid, int end) {
        int left = start;
        int right = mid + 1;
        int cur = left;

        for (int i = start; i <= end; ++i) {
            tmp[i] = pairArray[i];
        }

        while (left <= mid || right <= end) {
            if (left > mid) { // 这种情况无需再重复赋值, 直接break
                break;
            } else if (right > end) {
                pairArray[cur] = tmp[left];
                ++left;
            } else if (tmp[left].val > tmp[right].val) {
                count[tmp[left].idx] += end - right + 1; // 右半部分tmp[right, end]都 < nums[left]
                pairArray[cur] = tmp[left];
                ++left;
            } else { // tmp[left].val <= tmp[right].val
                pairArray[cur] = tmp[right];
                ++right;
            }
            ++cur;
        }
    }

    class Pair {
        public int val;
        public int idx;
        public Pair(int val, int idx) {
            this.val = val;
            this.idx = idx;
        }
    }
}

法2:归并排序—索引数组

必须掌握的基础算法!!!

class Solution {

    List<Integer> ans = new ArrayList<>();
    int[] index;    // 原数组的索引数组,存储着原数组中每个元素对应的下标
    int[] count;    // 记录题目中所求的count[i]
    int[] tmp;      // 临时数组, 存储一次归并过程中排序好的元素
    int[] tmpIndex; // 临时索引数组, 存储一次归并过程中排序好的元素对应原始索引

    //入口
    public List<Integer> countSmaller(int[] nums) {
        int n = nums.length;
        index = new int[n];
        count = new int[n];
        tmp = new int[n];
        tmpIndex = new int[n];
        for (int i = 0; i < n; i++) {
            index[i] = i;
        }
        mergeSort(nums, 0, n - 1);
        for (int i = 0; i < n; i++) {
            ans.add(count[i]);
        }
        return ans;
    }

    private void mergeSort(int[] nums, int start, int end) {
        if (start < end) {
            int mid = start + (end - start) / 2;
            mergeSort(nums, start, mid);  
            mergeSort(nums, mid + 1, end); 
            merge(nums, start, mid, end);  // 再将两个有序数组合并,只不过这里要承接统计count[i]的功能
        }
    }

    // 注意: 降序merge!!!
    private void merge(int[] nums, int start, int mid, int end) {
        int left = start;
        int right = mid + 1;
        int cur = left;

        while (left <= mid && right <= end) {
            if (nums[left] > nums[right]) {
                count[index[left]] += end - right + 1; // 右半部分小于nums[left]元素的数目
                tmpIndex[cur] = index[left];           // 记录元素位置的改变
                tmp[cur] = nums[left];
                ++left;
            } else {
                tmp[cur] = nums[right];
                tmpIndex[cur] = index[right];
                ++right;
            }
            ++cur;
        }
        while (left <= mid) {
            tmp[cur] = nums[left];
            tmpIndex[cur] = index[left];
            ++left;
            ++cur;
        }
        while (right <= end) {
            tmp[cur] = nums[right];
            tmpIndex[cur] = index[right];
            ++right;
            ++cur;
        }
        for (int i = start; i <= end; i++) {
            nums[i] = tmp[i];
            index[i] = tmpIndex[i];
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值