【done】【重点】【递归】剑指offer——面试题11:数值的整数次方

力扣
重点学习快速幂算法!

class Solution {
    public double myPow(double x, int n) {
        long N = n;
        return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N);
    }

    public double quickMul(double x, long N) {
        if (N == 0) {
            return 1.0;
        }
        double y = quickMul(x, N / 2);
        return N % 2 == 0 ? y * y : y * y * x;
    }
}

Solution1:基本算法
累乘,时间复杂度为O(n)
要考虑全部情况:指数 < 0, == 0 和 > 0.
注意在 if…else if的语句中最后一个最好写成else,否则在牛客网上编译报错

class Solution {
public:
    double Power(double base, int exponent) {
        double res=1.0;
        if(exponent>0){
            while(exponent-->0)
                res*=base;
            return res;
        }
        else if(exponent == 0){
            return res;
        }
        else {
            int abs_exp=-exponent;
            while(abs_exp-->0)
                res*=base;
            return (1.0/res);
        }
    }
};

Solution2:
优化版的算法:时间复杂度 O ( l o g n ) O(log n) O(logn)
当n为偶数: a n = a n / 2 ∗ a n / 2 a^n =a^{n/2}*a^{n/2} an=an/2an/2
当n为奇数: a n = a ( n − 1 ) / 2 ∗ a ( n − 1 ) / 2 ∗ a a^n = a^{(n-1)/2} * a^{(n-1)/2} * a an=a(n1)/2a(n1)/2a
书上的代码有坑,肾重啊肾重!

class Solution {
public:
    double Power(double base, int exponent) {
        int abs_exp = abs(exponent);
        if (abs_exp == 0)
            return 1;
        else if (abs_exp == 1)
            return base;
        double res = Power(base, abs_exp/2);
        res *= res;
        if (abs_exp & 1)
            res *= base;
        if (exponent < 0)
            res = 1/res;
        return res;
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值