问题I
Solution1:我的答案
二分查找
A是升序的
v
e
c
t
o
r
<
i
n
t
>
vector<int>
vector<int>
注意不要烦傻逼错误!!!
class MagicIndex {
public:
bool findMagicIndex(vector<int> A, int n) {
int low = 0, high = n-1, mid = 0;
while(low <= high) {
mid = (low + high)/2;
if(A[mid] == mid)
return true;
else if(A[mid] < mid)
low = mid + 1;
else
high = mid - 1;
}
return false;
}
};
问题II
Solution1:我的答案,
A是不降序的
v
e
c
t
o
r
<
i
n
t
>
vector<int>
vector<int>,这就稍微麻烦一点了。。。
书上的思路
class MagicIndex {
public:
bool findMagicIndex(vector<int> A, int n) {
// write code here
int start = 0, end = 0;
return my_find(A, n, start, end);
}
bool my_find(vector<int> A, int n,int start=0,int end =0) {
// write code here
/*
事实上,看到A[5]=3时按照二分查找的做法,我们需要递归搜索右半部分。不过,如搜索左半部分,
我们可以跳过一些元素,值递归搜索A[0]到A[3]的元素。A[3]是第一个可能成为魔术索引的元素。
综上:我们得到一种搜索模式,先比较midIndex和midValue是否相同。
然后,若两者不同,则按如下方式递归搜索左半部分和右半部分。
左半部分:搜索索引从start到min(midIndex-1,midValue)的元素。
右半部分:搜索索引从max(midIndex+1,midValue)到end的元素。
*/
if (start > end || start < 0 || end > n)
{
return false;
}
int mid = (end + start) / 2;
if (A[mid] == mid)
{
return true;
}
else
{
int leftEnd = min(mid - 1, A[mid]);
int rightStart = max(mid + 1, A[mid]);
return my_find(A, n, start, leftEnd) || my_find(A, n, rightStart, end);
}
}
};