- 博客(162)
- 收藏
- 关注
原创 当 CEO 患上了 AI 焦虑症(之四):NoETL,万数皆可问!
第一期剧情回顾:当 CEO 患上了 AI 焦虑症(之一):NL2SQL 翻车实录第二期剧情回顾:当 CEO 患上了 AI 焦虑症(之二):BI 知识库能否药到病除?第三期剧情回顾:当 CEO 患上了 AI 焦虑症(之三):指标平台的逆袭?
2025-05-08 09:14:19
103
原创 当 CEO 患上了 AI 焦虑症(之二)BI 知识库能否药到病除?
基于 BI 报表和数据集为大模型建设了业务语义知识库,可还是存在口径冲突、数据完备度有限,该如何突破?
2025-04-29 11:21:39
98
原创 当 CEO 患上了 AI 焦虑症(之一)NL2SQL 翻车实录
DeepSeek 将我们带入大模型平权时代,企业一把手急于落地 ChatBI。已经流行的 NL2SQL 技术路径看似不错,但真的可行吗?一组漫画,带你还原通过 NL2SQL 落地 ChatBI 的 4 个实测场景
2025-04-29 10:52:49
109
原创 Aloudata Agent 36 问,深度解惑!
包括用户问题涉及的基础度量(基础指标)、时间限定、业务限定(静态或动态维度筛选)、衍生方式(如排名、占比、同环比等)。Aloudata CAN 指标平台支持多次聚合类指标定义和查询,虽然只提前定义了比如客单价的指标,用户问的时候,可以基于多次聚合类语义定义能力,快速衍生出“近 30 天日均客单价”的指标,大大降低指标语义的前期准备工作。逻辑模型(DWD 层明细事实表与维表的关联关系)、指标元数据信息(包括指标名称、计算口径、管理属性等相关信息)、维度元数据信息(维度、维度值等相关信息)和指标血缘关系。
2025-04-27 11:46:22
729
原创 Aloudata Agent :基于 NoETL 明细语义层的分析决策智能体
这是包括我们在内的一些厂商探索的一个新方向,这种方式先由大模型将自然语言转化为对指标语义层的查询请求(MQL,Metrics Query Language),再由指标平台将指标和维度的查询与计算逻辑转化为准确的 SQL 查询语句。用户查询经大模型语义解析后,将其转换为指标、维度及筛选条件的组合表达,并生成面向指标平台的 MQL,Aloudata CAN 指标平台的语义引擎将 MQL 转换为准确和可执行的查询 SQL,语义引擎内置函数体系与 SQL 解析器,确保语义转换的 100% 准确性。
2025-04-25 09:46:10
631
原创 解锁指标平台,从选型实践到AI大模型融合创新的深度解析
指标平台从选型时的生态适配,到实施中的渐进革新,再到AI大模型带来的认知跃迁,企业需要以动态演进的视角构建指标管理体系
2025-04-17 11:44:05
1698
原创 莫让知本成阻碍,Aloudata给出智能公式:NoETL+大模型=万数皆可问
将于4月22日推出一款以“万数皆可问”为目标的ChatBI智能体——Aloudata Agent
2025-04-11 14:16:01
742
原创 如何通过NoETL指标平台实现对关键业务指标(如转化率)的实时监控告警?
企业可自定义告警指标,或按维度分组指标,监控指定时间段内的指标数据结果,且检测时间最小到分钟,并支持从低到高设定告警级别,以及对绝对值和同环比趋势两种告警规则的支持
2025-04-11 11:16:35
360
原创 指标平台从选型到落地:四大企业数据负责人倾囊分享万字干货
围绕“指标平台选型标准、价值评估、指标平台项目实施、与 AI 融合创新”等话题,共同探讨指标平台在企业中的落地实践
2025-04-03 09:00:00
810
原创 好数据驱动真智能:NoETL + 大模型 = 万数皆可问
Aloudata Agent 将在 4 月启动公测,欢迎大家访问 Aloudata 官网预约
2025-03-27 15:35:58
902
原创 周卫林|从模型平权到“知本”复利,NoETL 打造 AI 时代的数据底座
因此,我们认为,一个好的指标引擎必须实现真正的“管研用一体化”,才能解决 ChatBI 真正用起来的问题。第二,可溯源,可审计。在数据分析领域,数据准确是一切使用的前提。如何解决大模型的幻觉问题需要系统性的思考和设计,
2025-03-27 14:27:40
785
原创 Aloudata 联合瓴羊 Quick BI 推出「指标定义-计算-可视化-智能分析」全链路解决方案
Aloudata CAN 通过与 Quick BI 深度融合,企业既能保障指标精准性,又能释放 BI 工具的深度分析潜能,真正实现指标“定义即治理,定义即服务”。
2025-03-25 10:45:15
439
原创 万字长文详解|逻辑数据编织 VS 传统数据研发
一、引言随着企业信息化进程的快速推进,各类应用程序持续产生海量数据。过去近一个世纪的发展历程中,数据管理系统经历了从关系型数据库(RDBMS)到 NoSQL 数据库、文档数据库及对象存储等多样化演进。这些异构数据系统虽然为企业提供了多元化的数据管理方案,但也带来了数据开发与管理的显著挑战。无论是传统的关系型数据库(如 Oracle、MySQL、SQL Server),还是 Hadoop 生态系统中的 Hive、Spark、Impala 等组件,都采用了各自特定的 SQL 方言实现。这种技术碎片化现状给数据分
2025-02-25 18:01:48
979
原创 如何通过指标平台,最大化地提升数据分析的效率和质量?
通过统一指标管理、自动化指标生产、实时监控与预警归因、高性能查询能力、多维度自助分析等功能,显著提升了企业数据分析的效率和质量
2025-02-20 18:17:01
539
原创 浅析主动元数据平台对银行数据血缘管理的价值
通过算子级血缘解析,结合对脚本内部代码的抽取、改写、合并,能够清晰勾勒出任务输出表字段与输入表字段之间的完整加工关系,确保数据流转的透明化和可追溯性
2025-02-20 17:46:47
409
原创 主动元数据对金融机构监管报送有何帮助?
能够帮助企业构建一张全面、准确、精细、实时的算子级数据血缘图谱,精细刻画数据间的依赖关系,实现监管报送场景的问题一键溯源、变更风险持续预警和自动化口径盘点与持续保鲜
2025-02-13 15:51:49
854
原创 超全的企业级指标体系梳理方法论请查收!
企业指标体系建设是一项复杂但至关重要的工作。通过遵循合理性、全局性、唯一性和动态性的核心原则,并结合“自上而下拆解”与“自下而上梳理”的方法,企业能够构建一套完整、规范的指标体系。
2025-02-13 14:50:13
920
原创 指标+大模型,构建更全、更准、更快的数据分析体验
结合指标平台与大模型技术的 ChatBI 方案,通过“NL to Semantic to SQL”的模式,在准确性、效率和用户体验等方面实现了显著提升。这种方案不仅解决了传统数据分析模式中存在的诸多痛点,还为企业提供了一种更加智能化、便捷化的数据分析方式。
2025-02-13 14:34:28
1019
原创 企业数据虚拟化方案选型指南:构建下一代数据架构的核心逻辑
传统 ETL (抽取、转换、加载)模式带来的数据冗余、存储成本攀升、实时性不足等问题,已难以满足智能决策对数据敏捷性的要求。选择数据虚拟化方案的本质,是选择企业数据战略的进化方向。Aloudata AIR 凭借零搬运、免运维、自治理的价值主张,以及经过权威认证的成熟体系,正助力多家先进数智化企业实现数据架构的跃迁。Aloudata AIR 的虚拟化引擎采用自适应优化算法,在基准测试中,跨数据源的联合查询性能较传统方案提升 3-10 倍,且支持 TB 级数据量的实时分析,真正实现“数据零搬运,洞察零延迟”。
2025-02-13 10:54:45
263
原创 如何借助NoETL指标平台实现数据分析、决策的提效?
Aloudata CAN自动化指标平台以其强大的功能和灵活的应用性,不仅提升了数据分析的效率和准确性,还促进了不同角色之间的协作和数据流通,从而推动企业实现数据驱动的决策和精细化管理
2025-02-13 10:50:11
632
原创 数据虚拟化的本质:一场数据整合的革命
数据虚拟化是一种基于软件的技术,它通过构建一个统一的虚拟数据层,将分散在不同系统中的数据资源整合起来。这种整合并非物理上的数据迁移或复制,而是通过逻辑上的映射和抽象,让应用程序和用户能够像访问本地数据库一样访问虚拟化的数据。简单来说,数据虚拟化的目标是“所见即所得”,而不是“所存即所有”。它通过屏蔽底层数据源的复杂性,为企业提供了一个统一的数据视图。
2025-02-13 10:36:40
924
原创 企业如何构建 DataOps 体系,实现数据敏捷交付?
Aloudata BIG,能够帮助企业自动构建精细、准确、全面、实时的全局数据血缘图谱,实现数据链路看得清、管得住、治得动,驱动企业 DataOps 体系实现主动数据管理和敏捷数据协同
2025-02-08 11:04:55
708
原创 构建统一的指标体系,对企业业务决策和创新价值何在?
帮助客户降低指标开发成本,释放数据开发人员 30% 以上的精力,统一指标服务,实现自上而下、全场景指标口径 100% 一致,以及将业务策略迭代周期缩短至天级别等
2025-02-08 10:18:35
678
原创 Aloudata CAN 荣登 CSDN 2024 中国开发者影响力年度「创新产品与解决方案」榜单
Aloudata CAN 将继续坚持产品创新,打造更贴合企业数据分析场景的解决方案,加快实现以指标为中心的业务自助数据准备和分析
2025-01-23 11:25:23
264
原创 首批认证!Aloudata AIR 通过中国信通院“数据虚拟化平台技术要求”评测
此次评测依据中国通信标准化协会大数据技术标准推进委员会(CCSA TC601)制定的《数据编织 数据虚拟化平台技术要求》,覆盖数据连接、数据查询、平台管理、数据安全四大一级功能,14 个二级功能,以及 39 个功能点。Aloudata AIR 逻辑数据编织平台凭借卓越的技术能力,全面满足了全部 31 项必选功能的要求,同时在可选功能上表现优异,充分展现了我们在数据虚拟化领域的技术深度与产品成熟度。然而,面对数据来源多样、格式复杂、应用场景不断扩展的挑战,传统的数据治理方式已经难以满足企业多元化的需求。
2025-01-23 10:19:25
376
原创 开放下载|Aloudata《主动元数据,DataOps 建设新支点》白皮书出炉
为企业建设 DataOps 提供了一套理论扎实、技术先进且操作性极强的指导方案
2025-01-17 15:03:57
310
原创 指标平台在处理大量数据和复杂指标查询时的性能如何?
Aloudata CAN 平台在明细加速、指标与维度加速功能基础上,进一步增强了物化加速能力,推出了“指标结果加速”功能,并支持“实时加速”能力。通过自研的物化加速策略引擎、秒级查询响应、指标结果加速与实时加速能力等技术优势, Aloudata CAN 平台能够满足企业对于高效、实时数据分析的需求,为企业的业务决策和运营效率提供有力支持。Aloudata CAN 平台通过自研的物化加速策略引擎,能够基于业务人员的查询行为,提供物化加速的策略建议。Aloudata CAN自动化指标平台的性能优势。
2025-01-14 16:46:31
413
原创 Aloudata 荣登“数智技术系列榜单”和“数据智能服务商 TOP30”
持续助力各行业数智化先进企业突破数据管理技术瓶颈,以更加敏捷、精准和可靠的数据交付驱动企业业务创新与经营提效
2025-01-10 15:50:06
484
原创 指标平台如何帮助企业更有效地利用指标?
Aloudata CAN 自动化指标平台通过其强大的功能和灵活的设计,显著提升了企业利用指标的效率,特别是在构建、沉淀、管理和利用指标方面,为企业提供了全面的支持。
2025-01-10 15:33:10
373
原创 NoETL 自动化指标平台如何帮助企业实现战略目标与执行目标对齐?
结构化、系统化地呈现企业指标体系的关联关系,从战略指标层层拆解到运营过程指标,实现战略目标到业务执行的闭环
2025-01-10 15:26:36
636
原创 算子级血缘助力上下游变更影响分析和精准溯源
通过算子级血缘,企业能够更加深入地了解数据的流转情况和加工逻辑,及时发现和解决数据问题,为业务决策提供更加精准、实时的数据支持
2025-01-09 17:17:21
388
原创 数据集成和分析时,应该注意哪些关键因素?
逻辑数据编织平台作为一种新兴的数据集成和分析工具,凭借其数据最新最全和查询性能卓越的优势,已经在众多企业中得到了广泛的应用和实践。它不仅改变了传统数据集成的方式,提高了数据的时效性和完整性,还优化了查询路径和利用了缓存和预计算等技术手段,实现了卓越的查询性能。
2025-01-09 13:59:20
368
原创 企业如何实现多源异构数据的统一化管理?
多源异构数据的统一化管理是现代企业数字化转型过程中面临的重要挑战。通过 Aloudata AIR 逻辑数据编织平台,企业可以有效地解决这一挑战。这些工具或平台不仅具备强大的数据整合和查询性能,还能够提供统一的数据治理和安全保障,帮助企业充分挖掘多源异构数据的价值,推动业务创新和决策支持。
2025-01-09 11:49:59
1071
原创 NoETL 自动化指标平台在数据处理和复杂指标查询的性能表现
让分析人员能够将指标交付速度做到从周快进至分钟,利用物化加速能力,1s 查询响应率可达 95%,存算成本节约 70% 以上
2025-01-02 18:21:15
666
原创 算子级血缘对数据资产和数据质量管理的价值所在
算子级血缘技术通过深入解析数据处理逻辑,实现了对字段间复杂运算关系的精确捕捉。这种技术超越了表级和列级血缘解析,将数据血缘解析达到算子级别,能够提供更为精细和准确的数据血缘信息
2024-12-26 18:15:05
1029
原创 NoETL 自动化指标平台如何保障数据质量和口径一致性?
Aloudata CAN,集规范指标定义、自动指标生产、语义指标目录、开放指标服务于一体,能够帮助企业实现指标的“管、研、用”一体化,从而实现以指标中心,建立敏捷且一致的指标服务体系,保障数据质量和口径的一致性
2024-12-26 18:04:24
1093
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人