自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(199)
  • 收藏
  • 关注

原创 大火的 ChatBI,是如何实现灵活的自然语言数据分析?

这对业务人员而言,不仅简化了数据分析流程,更无需依赖 IT 代码开发,实现了自主灵活的智能问数,高效敏捷展开分析。

2025-12-17 12:40:05 419

原创 有了 Chat,BI 会消失么?

言必称 AI 的 2025 年即将过去,这一年里大数据领域的“顶流”毫无疑问是 ChatBI/Data Agent。岁末肯定要展望未来,于是,带着好奇,我们问了大模型几个问题:

2025-12-16 13:48:48 571

原创 业务人员也能用的 AI 数据分析工具?Aloudata Agent “开箱即用”体验报告

不仅提升了个人工作效率,更推动了企业数据民主化进程,让数据真正成为驱动业务增长的核心引擎

2025-12-11 17:58:05 828

原创 Data Agent 选型必看:为什么说“准确率”是大模型问数的第一基石?

当 ChatBI 的准确率不断提升,其价值将从“效率工具”升级为“决策中枢”。Aloudata Agent 分析决策智能体通过 NL2MQL2SQL 技术路径,可解决大模型在数据分析场景中的“幻觉”问题

2025-12-11 16:02:27 915

原创 数据语义编织:企业级 Data Agent 的必备基建

2025 年,每家企业都想拥有自己的 Data Agent,但 90% 的项目可能不是死在 Demo 阶段就是建成后无人问津。为什么?

2025-12-10 17:13:47 816

原创 从“是什么”到“为什么”:Aloudata Agent 智能归因的底层逻辑与配置指南

Aloudata Agent 是 Aloudata 推出的一套分析决策智能体,将 NoETL 明细语义层作为数据底座,以指标为中心进行语义一致的对话式数据分析。通过自然语言即刻获取数据结果,支持智能数据结果解读,以及智能多维归因和因子归因分析,让企业深层次洞察异常数据波动原因。

2025-12-08 17:31:51 676

原创 不只是问数:如何利用 Aloudata Agent 的“智能报告”功能,生成周报、月报?

Aloudata Agent 的智能融合报告,不追求用 AI 取代人的判断,而是通过降低表达门槛、固化分析逻辑、强化上下文关联,让身处业务一线的人,都能轻松地将直觉转化为洞察,将数据升华为决策。

2025-12-04 13:58:53 445

原创 通往可信数据智能的路线图,就在这本《NoETL to Trusted AI》白皮书

这份最新的《NoETL to Trusted AI》白皮书将进一步深入厘清以下几个核心问题,并为您揭示通往可信数据智能体的可行路径。

2025-12-02 19:30:00 263

原创 周卫林|大数据通往大模型的钥匙:NoETL to Trusted AI

此时此刻,站在 Data 和 AI 的十字路口,我不禁扪心自问:是创造还是涅灭,大数据如何通往大模型,数据资产如何成为 AI 资产?是廿年戎马终归碌碌无为,还是四载厚积一朝破茧成蝶——让 Aloudata 成为大数据通往大模型的钥匙,开启数据智能变革的黄金十年。

2025-12-01 20:00:00 755

原创 AI 数据分析产品推荐:更高效、更可控的智能报告解决方案

在与客户的共创中,我们发现数据团队仍被困在周报、月报的重复劳动中,AI 生成的报告往往结构松散、缺乏深度,无法直接使用。这引发我们对智能分析范式的重新思考,推出了 「智能融合报告」,确立了一种新的协作方式:您作为“总设计师”编排思路,AI 作为“超级工匠”精准执行。通过这种方式,您能够将业务经验融入分析框架,全程掌控生成过程,获得结构严谨、洞察深入且可复用的分析成果。如果您在寻找更高效、更可控的智能报告解决方案,这篇凝结我们实践思考的文章值得一读。

2025-11-27 15:30:12 789

原创 AI 数据分析如何保障准确性?构建可信数据基础成为关键

真正实现“自助式、敏捷化、可解释”的 AI 数据分析决策

2025-11-25 15:05:59 818

原创 企业级 VS 个人级:智能问数的“集团军”与“单兵作战”的差异解析

智能问数正迅速成为企业数据消费的新入口。从初创公司到世界 500 强,众多组织尝试通过“一句话问数”的方式,降低数据分析门槛、提升决策效率。理想很丰满,但现实很骨感,“问不准”、“不灵全”、“问不深”成为大量尝鲜用户的普遍感受。表面上看,这类失败常被归因于技术瓶颈——例如模型准确性不足、SQL 生成错误、响应延迟等。但深入剖析后不难发现,问题的根源往往并非技术本身,而在于对问题本质的误判:企业级智能问数与面向个人或小团队的轻量级工具,本质上解决的是两个截然不同维度的问题。

2025-11-19 16:36:10 866

原创 如何找到适合好用的 AI 数据分析软件?实用指南

AI 数据分析软件则通过自然语言交互、智能问数、自动化建模查询等技术,让业务人员无需写复杂的 SQL 即可自主获取数据洞察,快速定位问题根因,并生成结构化决策建议。

2025-11-18 19:39:54 738

原创 企业级 AI 数据分析“专家”——Data Agent 精选推荐

像 Aloudata Agent 这样的智能体将成为数据驱动决策的关键工具。它不仅是技术的创新,更是企业数据分析范式的革新,让“人人都是分析师”不再是一句口号,而是触手可及的现实。

2025-11-17 18:59:10 596

原创 企业级智能问数四问:从“语义鸿沟”到“统一认知”

企业级智能问数的探索之路,清晰地指向了一个结论:单纯依赖大模型的语言能力无法解决企业数据的根本性挑战。真正的突破口在于构建一个以语义编织为核心的新型数据基础设施。这套体系不仅实现了业务语言与数据语言的无缝对接,更在数据可信度、查询性能和系统安全等多个维度建立了坚实保障。语义编织的价值不仅体现在技术层面,更体现在组织协作方式的革新。它将原本分散在各处的业务规则、数据定义和权限策略进行了系统性的整合与标准化,为企业构建了一套统一的"数据认知体系"。

2025-11-13 11:27:06 653

原创 Aloudata Agent 重磅功能发布:“用户编排思路、AI 精准执行、可沉淀复用”的模块化分析报告

11 月 25 日(周二)19:00,Aloudata 资深产品专家赵祎祺将深度解析该功能,分享如何通过“模块化 AI 报告”将周报月报撰写时间缩短 70%。

2025-11-12 18:00:00 287

原创 漫画 | 告别天价云账单:我们如何终结“数据搬运税”?

告别天价云账单:我们如何终结“数据搬运税”?

2025-11-12 18:00:00 104

原创 2025 ChatBI 产品选型推荐:智能问数+归因分析+报告生成

当企业站在 ChatBI 选型的十字路口,技术架构的先进性、场景适配的完整性、落地实践的可验证性应成为核心考量标准。

2025-11-05 16:00:36 1120

原创 以 NoETL 指标语义层为核心:打造可信、智能的 Data Agent 产品实践

在这条通往智能化的道路上,许多先行企业都陷入了一些误区,导致落地后“问不准”、“问不全”、“问不深”,进而难以真正推广。那么企业级智能数据分析有哪些误区?采用怎样的技术方案才能让 Data Agent 不再是空中楼阁,而是真正可信且智能的业务伙伴呢?本文将给出 Aloudata 的答案。

2025-10-30 10:00:00 723

转载 站在 Agent 时代回看指标中台的价值,驱动智能体自主决策和行动

指标中台是企业从“人力密集型”数据分析时代,向“智能体密集型”自主决策和行动时代跨越的核心基础,正为今天的 AI 革命积蓄数据能量。这种战略预置也将成为企业智能化转型的关键要素。

2025-10-21 18:27:39 41

原创 智能问数 Agent 如何确保 SQL 生成 100% 准确?

基于强大的逻辑模型和语义函数,将混乱的数据转化成标准的指标定义,实现业务语言与 SQL 的映射。强大的语义数据模型:Aloudata 的 NoETL 指标语义层支持一对一、一对多以及复杂的多角色关联场景。例如,在电商场景中,一个用户可以同时是买家和卖家两种身份,意味着订单事实表中的买家 ID 和卖家 ID 要同时和客户维表中的用户 ID 进行关联;

2025-09-25 11:53:18 1506

原创 以 NoETL 重塑 AI-Ready 的数据底座,Aloudata 获评 IDC 面向生成式 AI 的数据基础设施核心厂商

Aloudata 大应科技自研了包含逻辑数据编织平台、主动元数据平台、自动化指标平台等在内的 NoETL 产品家族,并不断深化各产品间的融合贯通,为企业重塑 AI-Ready 的数据底座。

2025-09-19 11:45:37 985

原创 Aloudata AIR 推出 AI 数据画布:「拖拽+对话」即可实现跨源数据加工与查询

一边,是堆积如山的数据需求工单、反复修改的 SQL 脚本、跨源查询的兼容难题、ETL 任务的运维黑洞……另一边,是业务在等报表、产品在等指标、决策在等洞察——而数据团队,还在“搬数据”。这不仅是效率问题,更是数据价值延迟兑现的系统性困局。如果有一种方式,能让数据开发像对话一样自然,像搭积木一样简单,像搜索引擎一样高效呢?Aloudata AIR 逻辑数据编织平台全新上线「AI 数据画布」功能——帮助用户以对话方式轻松加速数据开发与查询。

2025-09-18 17:09:44 879

原创 加快 NoETL 数据工程实践, Aloudata 荣登《2025 中国数智化转型升级创新服务企业》榜单

Aloudata 始终秉承着“让数据就绪”的使命,加快 NoETL 数据工程的深度实践——通过逻辑数据编织替代物理搬运,用主动元数据管理破解数据治理难题,以指标“管研用”一体化打造“快全准省”的分析体验

2025-09-16 15:41:41 431

原创 当“数据波动”遇上“智能归因”,谁在背后画出那张因果地图?

不是所有“下降”都值得恐慌,也不是所有“增长”都值得庆祝。真正决定成败的,是你能否在数据异动发生的那一刻,就看清它背后的“为什么”。智能问数时代,企业不再满足于“看到数据”,更渴望“理解数据”。尤其当核心指标突然跳水、区域业绩悬殊拉大、转化率悄然滑坡……业务方的第一反应不是“查报表”,而是:“到底谁动了我的奶酪?

2025-09-11 14:33:57 703

原创 告别数据「分散管理、定期上报」,逻辑数据编织让集团总部实现全域数据零搬运统一集成

逻辑数据编织平台的价值绝不仅仅局限于大型集团企业内部看数,它是解决数字化时代日益增长的“数据孤岛”问题与日益严格的数据合规要求之间核心矛盾的关键技术解决方案

2025-09-09 11:14:54 812

原创 多云战略的悖论:为何全局数据“看得见”却“算不起”?

多云已成为企业数字化的常态,而数据服务的复杂性也随之升级。传统的“物理集中式”数据架构在多云环境下已显疲态。Aloudata AIR 逻辑数据编织平台的出现,提供了一种更具弹性和适应性的解决方案。通过构建“敏捷服务层 + 核心资产层”的混合数据架构—— 以 Aloudata AIR 逻辑数据编织平台作为敏捷服务层,轻量级处理探索性、临时性、跨源查询等需求;以集中式湖仓作为核心资产层,承载高复用性的精品数据资产——企业得以在敏捷性与一致性、成本与性能、本地化与全球化之间找到最优平衡。

2025-09-05 13:57:34 937

原创 五问五答,详解算子级血缘如何助企业数据管理主动防控与高效协同

可以将算子级血缘解析技术想象为数据库的 SQL 执行模拟器。最直观的特征是,它可以提取出不同范围内字段的加工口径。类似于数据专家在分析数据链路的时候,建立了对数据加工逻辑的理解。

2025-08-26 11:05:03 705

原创 速领!指标平台「实践案例研究报告」为您带来参考指南

访问 Aloudata 官网,立即获取案例报告

2025-07-28 18:57:57 4657

原创 Aloudata 入选 IDC “Data Flow Agent 代表厂商”和 DAC “数据资产运营商 TOP10”

在智能问数方面,Aloudata 开创了 NL2MQL2SQL 的全新技术路径,通过引入 NoETL 明细语义层,让企业告别“数据幻觉”,显著提升问数的准确性

2025-07-28 18:12:44 941

原创 对比印巴空战看 BI 代际革命与 Agent 技术突破

BI Agent 因此将推动传统 BI 的 “自助分析” 升维至 “自主分析” ,其价值不再是提供工具,而是交付 7×24 小时在线的智能分析服务。

2025-06-24 14:19:03 1150

原创 Aloudata 诚挚招募合作伙伴:携手共创数据智能新未来!

Aloudata 推出「NoETL 生态合作计划」诚挚招募「咨询合作伙伴」、「实施服务伙伴」、「解决方案伙伴」与「分销代理伙伴」,共建数据智能生态,共赢未来价值。

2025-06-19 11:01:40 822

原创 NoETL 指标平台:语义驱动数据治理的升维战

这种以“语义”为牵引、以“自动化”为支撑的治理范式,标志着数据治理从“成本中心”走向“价值引擎”的关键跃迁,为企业在数据洪流中构建高效、可信、敏捷的数据赋能体系提供了全新范式。企业可以考虑设立专门的“语义架构师”角色,其核心职责是统筹业务术语的标准化、语义模型的设计与维护,充当业务需求与技术实现的“翻译官”与仲裁者。数据治理是企业级的管理体系,其核心在于确保数据的可用性、一致性、完整性、安全性与合规性,使数据成为可信赖、可理解、可访问的战略资产,从而高效支撑企业的战略目标、运营决策、风险管理与价值创造。

2025-06-13 10:06:15 640

原创 指标体系建设的本质与落地逻辑——从战略到执行的闭环管理

构建一套科学、规范、可持续演进的指标体系,成为企业实现数据驱动运营的关键路径。本文将从指标体系建设的本质出发,探讨其构建原则、实施方法、管理机制及技术支撑,力求为企业提供一条清晰可行的建设思路。

2025-06-10 15:54:14 969

原创 产品动态速递|Aloudata CAN 指标定义能力与查询加速能力再次增强、用户体验进一步升级

Aloudata CAN 自动化指标平台通过配置化的指标定义和强大的指标加速能力,代持数仓应用层 ETL,帮助企业实现指标“管研用”一体化,打造“快全准省”的数据分析和业务决策体验,并为更全面、更准确、更智能的分析决策 Agent 打造了明细级的指标语义层。

2025-06-06 14:24:30 1052

原创 智能问数技术路径对比:NL2SQL vs NL2Semantic2SQL

指标平台与 LLM 的深度集成将进一步释放其价值,推动企业从“被动查询”转向“主动数据智能”

2025-05-30 10:58:03 1610

原创 乘“4”而上,进取不止|Aloudata 的变与不变

Aloudata 一路创新突破,以“NoETL”理念为指导,自研“数据虚拟化”、“算子级血缘解析”引擎,完成了产品矩阵化建设,并实现了在各行业头部企业真实数据环境中的落地应用,赋能客户数智化运营,赢得了市场和客户的高度认可

2025-05-21 17:36:37 427

原创 当 CEO 患上了 AI 焦虑症(之四):NoETL,万数皆可问!

第一期剧情回顾:当 CEO 患上了 AI 焦虑症(之一):NL2SQL 翻车实录第二期剧情回顾:当 CEO 患上了 AI 焦虑症(之二):BI 知识库能否药到病除?第三期剧情回顾:当 CEO 患上了 AI 焦虑症(之三):指标平台的逆袭?

2025-05-08 09:14:19 166

原创 当 CEO 患上了 AI 焦虑症(之三):指标平台的逆袭?

2025-05-07 14:03:09 140

原创 当 CEO 患上了 AI 焦虑症(之二)BI 知识库能否药到病除?

基于 BI 报表和数据集为大模型建设了业务语义知识库,可还是存在口径冲突、数据完备度有限,该如何突破?

2025-04-29 11:21:39 138

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除