面试题43:n个骰子的点数

        学习了一段时间《剑指offer》现在做了一些笔试,现在陆续把笔记上传到博客,方便自己及他人上网查看。

        题目:把n个骰子扔在地上,所有骰子朝上一面的点数之和为s。输入n,打印出s的所有可能值得出现概率。

        一共6个面,n个骰子所有点数最小值为n,最大值为6n。n个骰子的排列组合为6^n。要解决这个问题,我们需要先统计出每一个点数出现的次数,然后把每一个点数出现的次数除以6^n,就能求出每个点数出现的概率。

        解法一:基于递归求点数,时间效率不高

        把骰子分为两堆:第一堆一个,另一堆n-1个。我们需要计算第一个点数和剩下的n-1个骰子来计算点数和,把剩余的n-1个分为两堆,第一堆1个。另一堆n-2个,在统计点数和。递归思路;

        定义一个长度为6n-n+1的数组,和为s的点数出现的次数保存在数组第s-n个元素里,基于这种思路,代码如下:(递归的核心代码红色部分)

void Probability(int number, int* pProbabilities)
{
	for (int i = 1; i <= g_maxValue; ++i)
		Probability(number, number, i, pProbabilities);
}
//所有可能的sum出现的次数都统计下来
void Probability(int original, int current, int sum, int* pProbabilities)
{
	if (current == 1)
		pProbabilities[sum - original]++;
	else
	{
		for (int i = 1; i <= g_maxValue; ++i)
		{
			Probability(original, current - 1, i + sum, pProbabilities);
		}
	}
}

void PrintProbability(int number)
{
	if (number < 1)
		return;
	int maxSum = number*g_maxValue;
	int* pProbabilities = new int[maxSum - number + 1];
	for (int i = number; i <= maxSum; ++i)
		pProbabilities[i - number] = 0;
	Probability(number, pProbabilities);

	int total = pow((double)g_maxValue, number);
	for (int i = number; i <= maxSum; ++i)
	{
		double ratio = (double)pProbabilities[i - number] / total;
		cout << "sum: " << i << " " << "ratio: " << ratio << endl;
	}
	delete[] pProbabilities;
}

         由于递归的实现,它有很多计算是重复的,从而导致当number变大时性能慢的让人不能接受,关于递归的性能讨论,第二章有描述;

 

        解法二:基于循环求骰子点数,时间性能好

        用两个数组来存储骰子点数的每一个总数出现的次数。在一次循环中第一个数组中的第n个数字表示骰子和为n的出现次数,在下一个循环中,我们加上一个新的骰子,此时和为n的骰子出现的次数应该等于上一次循环中骰子点数和为n-1,n-2,n-3,n-4,n-5与n-6的次数的总和,所以我们把另一个数组的第n个数字设置为前一个数组对应的第n-1,n-2,n-3,n-4,n-5与n-6之和。代码如下:

void PrintPossiblity(int number)
{
	if (number < 1)
		return;
	int* pPro[2];
	pPro[0] = new int[g_maxValue*number + 1];
	pPro[1] = new int[g_maxValue*number + 1];
	for (int i = 0; i < g_maxValue*number + 1; ++i)
	{
		pPro[0][i] = 0;
		pPro[1][i] = 0;
	}
	int flag = 0;
	//将第一个骰子出现和次数置为1
	for (int i = 1; i <= g_maxValue; ++i)
		pPro[flag][i] = 1;
	for (int k = 2; k <= number; ++k)
	{
		for (int i = 0; i < k; ++i)
			pPro[1 - flag][i] = 0;
		//g_maxValue*k是K个骰子和的最大值
		for (int i = k; i <= g_maxValue*k; ++i)
		{
			pPro[1 - flag][i] = 0;
			//第n个数字设置为前一个数组对应的第n-1,n-2,n-3,n-4,n-5与n-6之和
			for (int j = 1; j <= i&&j <= g_maxValue; ++j)
				pPro[1 - flag][i] += pPro[flag][i - j];
		}
		flag = 1 - flag;
	}
	int total = pow((double)g_maxValue, number);
	for (int i = number; i <= g_maxValue*number; ++i)
	{
		double ratio = (double)pPro[flag][i] / total;
		cout << "sum: " << i << " " << "ratio: " << ratio << endl;
	}
	delete[] pPro[0];
	delete[] pPro[1];
}

        在上述的代码中:定义两个数组pPro【0】,pPro【1】来存储骰子的点数之和,在一轮循环中,一个数组的第n项等于另一数组的第n-1,n-2。。。n-6的和,在下一轮循环中交换两个数组(通过改变变量flag实现)在重复这一计算过程。





  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值