商人的诀窍
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
E_star和von是中国赫赫有名的两位商人,俗话说的好无商不奸,最近E_star需要进一批苹果。可是他需要的苹果只有von才有,von的苹果都存在他的传说中很牛叉的仓库里,每个仓库都存了不同种类的苹果,而且每个仓库里的苹果的价钱不同。如果E_star想要买仓库i里的所有重量为f[i]的苹果他必须付m[i]的金钱。E_star开着他的传说中的毛驴车去拉苹果,而且他只带了N些金钱。E_star作为传说中的奸商希望用它所带的N金钱得到重量最多的苹果。你作为他最好的朋友,所以他向你求出帮助。希望你能帮忙计算出他能买到最多的苹果(这里指重量最大)。并输出最大重量。
提示:这里仅考虑仓库里苹果的重量,不考虑个数。
Input
第一行包括两个非负整数N,M(分别代表E_star带的金币数,von盛苹果的仓库数量,不超过50)。
接下来有有M行,每行包括两个数非负整数f[i]和m[i]分别表示第i仓库里存有重量为f[i]的苹果,如果将所有苹果买下要花费m[i]的金钱,E_star不必非要将每个仓库的苹果全部买下。
当M,N二者中任一为-1时结束。
Output
E_star用N的金币所能买到的最大重量的苹果的重量。结果保留三位小数。
Sample Input
5 3 7 2 4 3 5 2 20 3 25 18 24 15 15 10 -1 -1
Sample Output
13.333 31.500
#include <stdio.h>
#include <stdlib.h>
struct node
{
int p;
int w;
double z;
} a[50],t;
int main()
{
int n,m,i,j;
double sum;
while(~scanf("%d%d",&n,&m)&&(n!=-1||m!=-1))
{
sum = 0;
for(i=0; i<m; i++)
{
scanf("%d%d",&a[i].w,&a[i].p);
a[i].z = (double)a[i].w/(double)a[i].p;
}
for(i=0; i<m-1; i++)
{
for(j=0; j<m-1-i; j++)
{
if(a[j].z<a[j+1].z)
{
t = a[j];
a[j] = a[j+1];
a[j+1] = t;
}
}
}
for(i=0; i<m; i++)
{
if(n<a[i].p)
break;
n -= a[i].p;
sum += a[i].w;
}
if(i<m)
sum += n*a[i].z;
printf("%.3f\n",sum);
}
return 0;
}