商人的诀窍

商人的诀窍

Time Limit: 1000 ms Memory Limit: 65536 KiB

Submit Statistic

Problem Description

E_star和von是中国赫赫有名的两位商人,俗话说的好无商不奸,最近E_star需要进一批苹果。可是他需要的苹果只有von才有,von的苹果都存在他的传说中很牛叉的仓库里,每个仓库都存了不同种类的苹果,而且每个仓库里的苹果的价钱不同。如果E_star想要买仓库i里的所有重量为f[i]的苹果他必须付m[i]的金钱。E_star开着他的传说中的毛驴车去拉苹果,而且他只带了N些金钱。E_star作为传说中的奸商希望用它所带的N金钱得到重量最多的苹果。你作为他最好的朋友,所以他向你求出帮助。希望你能帮忙计算出他能买到最多的苹果(这里指重量最大)。并输出最大重量。

提示:这里仅考虑仓库里苹果的重量,不考虑个数。

Input

第一行包括两个非负整数N,M(分别代表E_star带的金币数,von盛苹果的仓库数量,不超过50)。

接下来有有M行,每行包括两个数非负整数f[i]和m[i]分别表示第i仓库里存有重量为f[i]的苹果,如果将所有苹果买下要花费m[i]的金钱,E_star不必非要将每个仓库的苹果全部买下。

当M,N二者中任一为-1时结束。

Output

 E_star用N的金币所能买到的最大重量的苹果的重量。结果保留三位小数。

Sample Input

5 3
7 2
4 3
5 2
20 3
25 18
24 15
15 10
-1 -1

Sample Output

13.333
31.500
#include <stdio.h>
#include <stdlib.h>
struct node
{
    int p;
    int w;
    double z;
} a[50],t;
int main()
{
    int n,m,i,j;
    double sum;
    while(~scanf("%d%d",&n,&m)&&(n!=-1||m!=-1))
    {
        sum = 0;
        for(i=0; i<m; i++)
        {
            scanf("%d%d",&a[i].w,&a[i].p);
            a[i].z = (double)a[i].w/(double)a[i].p;
        }
        for(i=0; i<m-1; i++)
        {
            for(j=0; j<m-1-i; j++)
            {
                if(a[j].z<a[j+1].z)
                {
                    t = a[j];
                    a[j] = a[j+1];
                    a[j+1] = t;
                }
            }
        }
        for(i=0; i<m; i++)
        {
            if(n<a[i].p)
                break;
            n -= a[i].p;
            sum += a[i].w;
        }
        if(i<m)
            sum += n*a[i].z;
        printf("%.3f\n",sum);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值