【论文学习】Face Verification Using Deep Belief Networks

本文介绍了使用深度信念网络进行3D人脸识别的研究,主要包括特征提取、训练和验证三个步骤。在特征提取阶段,通过范围过滤、下采样、法向量估计和主曲率估计获取人脸特征。训练阶段采用深度信念网络,结构包含一个可见层、两个隐藏层和一个回归层。实验结果显示,在1000个3D正面人脸点云数据上,使用500个点云作为正样本,500个作为负样本进行训练,用于人脸验证。
摘要由CSDN通过智能技术生成

Icpr2016

Dong-Han Jhuang, Daw-Tung Lin∗, and Chi-Hung Tsai——National Taipei University

 

任务:

识别出一张人脸,有没有这个人脸

 

三步骤:

 

1、 feature extraction phase:

 

        range filtering:提取ROI,如把人脸从图像中抠出来

        down sampling:选部分的点

        Normal Vector Estimation:找脸

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值